OFFSET
1,1
COMMENTS
Primes p such that (q-p)*(r-p) > p, where q and r are the next two primes after p.
a(16) > 10^8 if it exists.
Sequence is finite if Cramér's conjecture is true. - Chai Wah Wu, Nov 03 2020
Data from A002386 and A005250 show that a(16) > 18361375334787046697 if it exists. - Jason Yuen, Jun 13 2024
EXAMPLE
a(5) = 11 is a member because 11 is prime, the next two primes are 13 and 17, and (13-11)*(17-11) = 12 > 11.
MAPLE
p:= 0: q:=2:r:= 3: R:= NULL:
while p < 10^4 do
p:= q: q:= r: r:= nextprime(r);
if (q-p)*(r-p) > p then R:= R, p fi
od:
R;
PROG
(Python)
from sympy import nextprime
A338577_list, p, q, r = [], 2, 3, 5
while p < 10**6:
if (q-p)*(r-p) > p:
A338577_list.append(p)
p, q, r = q, r, nextprime(r) # Chai Wah Wu, Nov 03 2020
CROSSREFS
KEYWORD
nonn,more,hard
AUTHOR
Robert Israel, Nov 03 2020
STATUS
approved