login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338575
Number of even permutations on n letters that have a root.
0
1, 3, 9, 45, 270, 1680, 11340, 108108, 1005480, 10929600, 114845445, 1543647105, 20367547200, 305087041350, 4428663384600, 76921682828760, 1322260935065280, 24987504206574000, 464475474578648925, 9916256376966427425, 209858853988540310400, 4809961676643673161150
OFFSET
2,2
LINKS
Lev Glebsky, Melany Licón, and Luis Manuel Rivera, On the number of even roots of permutations, arXiv:1907.00548 [math.CO], 2019.
M. R. Pournaki, On the number of even permutations with roots, Australasian Journal of Combinatorics, Volume 45 (2009), Pages 37-42. See Theorem 1.1 p. 37.
FORMULA
E.g.f.: sqrt((1+x)/(1-x))*Product_{k>=1} cosh(x^(2*k)/(2*k)) - (1/2)*Product_{k>=1} (1+x^(2*k-1)/(2*k-1)) * (Product_{k>=1} cosh(x^(2*k)/(2*k)) - Product_{k>=1} cos(x^(2*k)/(2*k))) for n >= 2.
MATHEMATICA
m = 24;
(Sqrt[(1+x)/(1-x)] Product[Cosh[x^(2k)/(2k)], {k, 1, m}] - (1/2) Product[1 + x^(2k-1)/(2k-1), {k, 1, m}] (Product[Cosh[x^(2k)/(2k)], {k, 1, m}] - Product[Cos[x^(2k)/(2k)], {k, 1, m}]) + O[x]^m // CoefficientList[#, x]&)Range[0, m-1]! // Drop[#, 2]& (* Jean-François Alcover, Nov 17 2020 *)
PROG
(PARI) my(N=30, x='x+O('x^N), v=Vec(serlaplace(sqrt((1+x)/(1-x))*prod(k=1, N, cosh(x^(2*k)/(2*k))) - (1/2)*prod(k=1, N, 1+x^(2*k-1)/(2*k-1))*(prod(k=1, N, cosh(x^(2*k)/(2*k))) - prod(k=1, N, cos(x^(2*k)/(2*k))))))); vector(#v-2, k, v[k+2])
CROSSREFS
Cf. A003483.
Sequence in context: A038059 A369388 A174318 * A004990 A027616 A245140
KEYWORD
nonn
AUTHOR
Michel Marcus, Nov 04 2020
STATUS
approved