login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053192
a(n) is the cototient of n^3.
7
0, 4, 9, 32, 25, 144, 49, 256, 243, 600, 121, 1152, 169, 1568, 1575, 2048, 289, 3888, 361, 4800, 3969, 5808, 529, 9216, 3125, 9464, 6561, 12544, 841, 19800, 961, 16384, 14157, 20808, 13475, 31104, 1369, 28880, 22815, 38400, 1681, 52920, 1849, 46464
OFFSET
1,2
COMMENTS
For n^k, n^k - EulerPhi(n^k) = n^(k-1)*(n-EulerPhi(n)), or cototient(n^k) = n^(k-1)*cototient(n). A similar relation holds for Euler totient function.
LINKS
FORMULA
a(n) = n^2*Cototient(n) = A051953(n^3) = n^3 - EulerPhi(n^3) = Cototient(n^3).
a(prime(n)) = A051953(prime(n)^3) = A001248(n).
Sum_{k=1..n} a(k) ~ c * n^4 / 4, where c = 1 - 6/Pi^2 (A229099). - Amiram Eldar, Dec 15 2023
MATHEMATICA
Table[(n^3 - EulerPhi[n^3]), {n, 1, 50}] (* Vincenzo Librandi, Jul 27 2013 *)
PROG
(PARI) a(n) = n^3 - eulerphi(n^3) \\ Michel Marcus, Jul 26 2013
(Magma) [n^3-EulerPhi(n^3): n in [1..44]]; // Vincenzo Librandi, Jul 28 2013
KEYWORD
nonn,easy
AUTHOR
Labos Elemer, Mar 02 2000
STATUS
approved