login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280163
Least number k such that sopfr(k) - sopf(k) = k/n, -1 if such a number does not exist.
2
4, 9, 32, 25, 12, 49, 48, 54, 20, 121, 96, 169, 28, 45, 144, 289, 162, 361, 160, 63, 44, 529, -1, 250, 52, -1, 224, 841, 60, 961, 320, 99, 68, 175, 180, 1369, 76, 117, 240, 1681, 84, 1849, 352, 270, 92, 2209, -1, 686, -1, 153, 416, 2809, -1, 275, 336, 171, 116
OFFSET
2,1
COMMENTS
a(n) = n^2 for n prime.
Values equal to -1 are hypothetical (tested up to 2*10^10 by Giovanni Resta).
EXAMPLE
a(6) = 12 because 12 is the least number such that sopfr(12) - sopf(12) = 7 - 5 = 2 = 12/6.
MAPLE
with(numtheory): P:=proc(q) local a, j, k, n;
for n from 2 to q do for j from n by n to q do
a:=ifactors(j)[2]; if add(a[k][1]*a[k][2], k=1..nops(a))-add(a[k][1], k=1..nops(a))=j/n then
lprint(n, j); break; fi; od; od; end: P(10^6);
MATHEMATICA
Table[SelectFirst[Range[n^3], Function[k, Total@ # - Total@ Union@ # == k/n &@ Flatten@ Map[ConstantArray[#1, #2] & @@ # &, #] &@ FactorInteger@ k]] /. k_ /; MissingQ@ k -> -1, {n, 2, 58}] (* Version 10.2, or *)
Table[k = 1; While[And[Total@ # - Total@ Union@ # != k/n, k <= n^3] &@ Flatten@ Map[ConstantArray[#1, #2] & @@ # &, #] &@ FactorInteger@ k, k++]; If[k > n^3, -1, k], {n, 2, 58}] (* Michael De Vlieger, Dec 28 2016 *)
CROSSREFS
Sequence in context: A270206 A271461 A272423 * A361987 A071378 A053192
KEYWORD
sign
AUTHOR
Paolo P. Lava, Dec 27 2016
STATUS
approved