login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the cototient of n^3.
7

%I #24 Dec 15 2023 06:18:59

%S 0,4,9,32,25,144,49,256,243,600,121,1152,169,1568,1575,2048,289,3888,

%T 361,4800,3969,5808,529,9216,3125,9464,6561,12544,841,19800,961,16384,

%U 14157,20808,13475,31104,1369,28880,22815,38400,1681,52920,1849,46464

%N a(n) is the cototient of n^3.

%C For n^k, n^k - EulerPhi(n^k) = n^(k-1)*(n-EulerPhi(n)), or cototient(n^k) = n^(k-1)*cototient(n). A similar relation holds for Euler totient function.

%H Vincenzo Librandi, <a href="/A053192/b053192.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = n^2*Cototient(n) = A051953(n^3) = n^3 - EulerPhi(n^3) = Cototient(n^3).

%F a(prime(n)) = A051953(prime(n)^3) = A001248(n).

%F Sum_{k=1..n} a(k) ~ c * n^4 / 4, where c = 1 - 6/Pi^2 (A229099). - _Amiram Eldar_, Dec 15 2023

%t Table[(n^3 - EulerPhi[n^3]), {n, 1, 50}] (* _Vincenzo Librandi_, Jul 27 2013 *)

%o (PARI) a(n) = n^3 - eulerphi(n^3) \\ _Michel Marcus_, Jul 26 2013

%o (Magma) [n^3-EulerPhi(n^3): n in [1..44]]; // _Vincenzo Librandi_, Jul 28 2013

%Y Cf. A000010, A051953, A002618, A053650, A053191, A001248, A229099.

%K nonn,easy

%O 1,2

%A _Labos Elemer_, Mar 02 2000