login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A053194
a(n) is the smallest number k such that cototient(k) = 2n - 1.
2
2, 9, 25, 15, 21, 35, 33, 39, 65, 51, 45, 95, 69, 63, 161, 87, 93, 75, 217, 99, 185, 123, 117, 215, 141, 235, 329, 159, 105, 371, 177, 135, 305, 427, 201, 335, 213, 207, 245, 511, 189, 395, 165, 415, 581, 267, 261, 623, 1501, 195, 485, 303, 225, 515, 321, 231
OFFSET
1,1
COMMENTS
If the Goldbach conjecture holds, then for all odd numbers InvCot[2s-1] is nonempty.
All terms except a(1)=2 are odd numbers. All InvCototient[odd] sets seems to be nonempty, which does not hold for similar inverses of even numbers (see A005278).
Are there infinitely many semiprimes in the sequence? - Thomas Ordowski, Oct 07 2016
LINKS
FORMULA
a(n) = Min{x : A051953(x)=2n-1}.
a(n) < (2n-1)^2 for n > 3 (if the Goldbach conjecture holds). - Thomas Ordowski, Oct 07 2016
EXAMPLE
n=18, a(18)=75, phi(75)=40, cototient(75) = 75-40 = 35 = 2*18-1.
n=12, a(12)=95 is the smallest in set {95, 119, 143, 529, ...} to the terms of which cototient(95) = cototient(119) = cototient(143) = cototient(529) = 95 - 72 = 119 - 96 = 143 - 120 = 529 - 506 = 23 = 2*12 - 1.
MAPLE
N:= 1000: # to get a(1) .. a(N)
V:= Vector(N):
V[1]:= 2:
count:= 1:
for k from 3 to 10^7 by 2 while count < N do
v:= k - numtheory:-phi(k);
if v::odd and v <= 2*N-1 and V[(v+1)/2] = 0 then
count:= count+1;
V[(v+1)/2]:= k;
fi;
od:
convert(V, list); # Robert Israel, Oct 10 2016
MATHEMATICA
Table[k = 1; While[k - EulerPhi@ k != 2 n - 1, k++]; k, {n, 120}] (* Michael De Vlieger, Oct 10 2016 *)
PROG
(PARI) a(n) = k = 1; while (k - eulerphi(k) != 2*n - 1, k++); k
CROSSREFS
Sequence in context: A261431 A360515 A226388 * A346069 A005582 A173965
KEYWORD
nonn
AUTHOR
Labos Elemer, Mar 02 2000
EXTENSIONS
Name corrected by Thomas Ordowski, Oct 07 2016
STATUS
approved