login
A173965
Averages of four consecutive cubes.
1
2, 9, 25, 56, 108, 187, 299, 450, 646, 893, 1197, 1564, 2000, 2511, 3103, 3782, 4554, 5425, 6401, 7488, 8692, 10019, 11475, 13066, 14798, 16677, 18709, 20900, 23256, 25783, 28487, 31374, 34450, 37721, 41193, 44872, 48764, 52875, 57211, 61778
OFFSET
1,1
COMMENTS
(0^3+1^3+2^3+3^3)/4=9,..
FORMULA
a(n)=(2*n-1)*(n^2-n+4)/2 = (2*n-1)*A089071(n+1) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). G.f.: x*(1+x)*(2*x^2-x+2)/(x-1)^4. [From R. J. Mathar, Mar 31 2010]
MATHEMATICA
f[n_]:=(n^3+(n+1)^3+(n+2)^3+(n+3)^3)/4; Table[f[n], {n, -1, 5!}]
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved