The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A124633 Poincaré series [or Poincare series] P(C^o_{3,2}; x). 0
 1, 2, 9, 25, 66, 149, 329, 650, 1248, 2255, 3941, 6608, 10799, 17085, 26456, 39983, 59306, 86274, 123572, 174146, 242186, 332312, 450738, 604418, 802447, 1054848, 1374561, 1775839, 2276528, 2896401, 3659799, 4593424, 5729858, 7104777, 8760897, 10745098 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Table of n, a(n) for n=0..35. Dragomir Z. Djokovic, Poincaré series [or Poincare series] of some pure and mixed trace algebras of two generic matrices. See Table 8. Index entries for linear recurrences with constant coefficients, signature (2, 2, -3, -5, -2, 11, 7, -5, -11, -9, 9, 11, 5, -7, -11, 2, 5, 3, -2, -2, 1). FORMULA G.f.: (x^12+3*x^10+6*x^9+9*x^8+6*x^7+12*x^6+6*x^5+9*x^4+6*x^3+3*x^2+1) / ((1-x)^2*(1-x^2)^3*(1-x^3)^3*(1-x^4)). MATHEMATICA CoefficientList[Series[(x^12+3x^10+6x^9+9x^8+6x^7+12x^6+6x^5+9x^4+6x^3+3x^2+1)/((1-x)^2(1-x^2)^3(1-x^3)^3(1-x^4)), {x, 0, 40}], x] (* or *) LinearRecurrence[{2, 2, -3, -5, -2, 11, 7, -5, -11, -9, 9, 11, 5, -7, -11, 2, 5, 3, -2, -2, 1}, {1, 2, 9, 25, 66, 149, 329, 650, 1248, 2255, 3941, 6608, 10799, 17085, 26456, 39983, 59306, 86274, 123572, 174146, 242186}, 40] (* Harvey P. Dale, Apr 01 2023 *) CROSSREFS Sequence in context: A173965 A116454 A295143 * A093122 A305351 A101051 Adjacent sequences: A124630 A124631 A124632 * A124634 A124635 A124636 KEYWORD nonn AUTHOR N. J. A. Sloane, Dec 21 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 02:23 EDT 2024. Contains 372617 sequences. (Running on oeis4.)