OFFSET
1,3
COMMENTS
Also the number of placements of a horizontal and a vertical domino on the n X n board. - Ralf Stephan, Jun 10 2014
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..10000
Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
FORMULA
a(n) = (n^2 - 4) * (n-1)^2.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), with a(1)=0, a(2)=0, a(3)=20, a(4)=108, a(5)=336. - Harvey P. Dale, Aug 16 2011
G.f.: (4*x^3*((x-2)*x-5))/(x-1)^5. - Harvey P. Dale, Aug 16 2011
MATHEMATICA
Table[(n^2-4)(n-1)^2, {n, 40}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 20, 108, 336}, 40] (* Harvey P. Dale, Aug 16 2011 *)
PROG
(Magma) [(n^2 - 4) * (n-1)^2: n in [1..40]]; // Vincenzo Librandi, Sep 14 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Reinhard Zumkeller, Mar 03 2010
STATUS
approved