The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A278642 Number of pairs of orientable necklaces with n beads and up to 6 colors; i.e., turning the necklace over does not leave it unchanged. The turned-over necklace is not included in the count. 2
 0, 0, 0, 20, 105, 672, 3535, 19350, 102795, 556010, 3010098, 16467450, 90619690, 502194420, 2798240265, 15671993560, 88156797855, 497837886000, 2821092554035, 16035752398770, 91403856697944, 522308167195260, 2991401733402075, 17168047238861070, 98716274117752900, 568605754068247644, 3280417827002225910, 18953525314104758810 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Number of chiral bracelets of n beads using up to six different colors. LINKS FORMULA Equals (A054625(n) - A056488(n)) / 2 = A054625(n) - A056341(n) = A056341(n) - A056488(n), for n >= 1. G.f.: k = 6, (1 - Sum_{n >= 1} phi(n)*log(1 - k*x^n)/n - Sum_{i = 0..2} Binomial[k, i]*x^i / ( 1 - k*x^2) )/2. For n > 0, a(n) = -(k^floor((n+1)/2) + k^ceiling((n+1)/2))/4 + (1/2n)* Sum_{d|n} phi(d)*k^(n/d), where k = 6 is the maximum number of colors. - Robert A. Russell, Sep 24 2018 MATHEMATICA mx = 40; f[x_, k_] := (1 - Sum[EulerPhi[n] * Log[1 - k * x^n]/n, {n, mx}] - Sum[Binomial[k, i] * x^i, {i, 0, 2}]/(1 - k * x^2))/2; CoefficientList[Series[f[x, 6], {x, 0, mx}], x] k = 6; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/(2n) - (k^Floor[(n + 1)/2] + k^Ceiling[(n + 1)/2])/4, {n, 30}], 0] (* Robert A. Russell, Sep 24 2018 *) CROSSREFS Column 6 of A293496. Cf. A059076 (2 colors), A278639 (3 colors), A278640 (4 colors), A278641 (5 colors). Sequence in context: A187756 A248087 A209547 * A135174 A173963 A202957 Adjacent sequences:  A278639 A278640 A278641 * A278643 A278644 A278645 KEYWORD nonn AUTHOR Herbert Kociemba, Nov 24 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 31 14:24 EDT 2020. Contains 333151 sequences. (Running on oeis4.)