login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187756
a(n) = n^2 * (4*n^2 - 1) / 3.
3
0, 1, 20, 105, 336, 825, 1716, 3185, 5440, 8721, 13300, 19481, 27600, 38025, 51156, 67425, 87296, 111265, 139860, 173641, 213200, 259161, 312180, 372945, 442176, 520625, 609076, 708345, 819280, 942761, 1079700, 1231041, 1397760, 1580865, 1781396, 2000425
OFFSET
0,3
LINKS
P. Aluffi, Degrees of projections of rank loci, arXiv:1408.1702 [math.AG], 2014. ["After compiling the results of many explicit computations, we noticed that many of the numbers d_{n,r,S} appear in the existing literature in contexts far removed from the enumerative geometry of rank conditions; we owe this surprising (to us) observation to perusal of [Slo14]."]
FORMULA
G.f.: x * (1 + x) * (1 + 14*x + x^2) / (1 - x)^5.
a(n) = a(-n) for all n in Z.
a(n) = n * A000447(n).
G.f. A144853(x) = 1 / (1 - a(1)*x / (1 - a(2)*x / (1 - a(3)*x / ... ))).
EXAMPLE
G.f. = x + 20*x^2 + 105*x^3 + 336*x^4 + 825*x^5 + 1716*x^6 + 3185*x^7 + ...
MATHEMATICA
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 20, 105, 336}, 40] (* Harvey P. Dale, Mar 26 2016 *)
a[ n_] := SeriesCoefficient[ x * (1 + x) * (1 + 14*x + x^2) / (1 - x)^5, {x, 0, Abs[n]}]; (* Michael Somos, Dec 26 2016 *)
PROG
(PARI) {a(n) = polcoeff( x * (1 + x) * (1 + 14*x + x^2) / (1 - x)^5 + x * O(x^n), abs(n))};
(Maxima) A187756(n):=n^2*(4*n^2-1)/3$ makelist(A187756(n), n, 0, 20); /* Martin Ettl, Jan 07 2013 */
(Magma) [n^2*(4*n^2-1)/3: n in [0..50]]; // G. C. Greubel, Aug 10 2018
CROSSREFS
Sequence in context: A063785 A181703 A334419 * A248087 A209547 A278642
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Jan 03 2013
STATUS
approved