login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181703
Numbers of the form m = 2^(t-1)*(2^t-3), where 2^t-3 is prime.
5
20, 104, 464, 1952, 130304, 522752, 8382464, 134193152, 549754241024, 8796086730752, 140737463189504, 144115187270549504, 196159429230833773869868419445529014560349481041922097152, 3450873173395281893717377931138512601610429881249330192849350210617344
OFFSET
1,1
COMMENTS
This is a subsequence of A181595. [Proof: sigma(m) = (2^t-1)*(2^t-2) leads to an abundance of m which is 2.]
Numbers m such that the sum of the even divisors of m equals the square of the odd divisors of m.
Proof: let s0 the sum of the even divisors and s1 the sum of the odd divisors.
s1 = 2^t-2 because 2^t-3 is prime.
s0 = 2 + 4 + 8 + ... + 2^(t-1) + (2^t - 3)(2 + 4 + 8 + ... + 2^(t-1)) = (2^t - 2)^2 => s0 = s1^2. - Michel Lagneau, Apr 17 2013
MAPLE
with(numtheory):for n from 1 to 600000 do:x:=divisors(n):n0:=nops(x):s0:=0:s1:=0:for k from 1 to n0 do:if irem(x[k], 2)=0 then s0:=s0+ x[k]:else s1:=s1+ x[k]:fi:od:if s0=s1^2 then print(n):else fi:od: # Michel Lagneau, Apr 17 2013
PROG
(PARI) for(k=1, 200, if(ispseudoprime(2^k-3), print1(2^(k-1)*(2^k-3), ", "))) \\ Eric Chen, Jun 13 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Nov 06 2010
EXTENSIONS
Edited and extended by D. S. McNeil, Nov 18 2010
Definition simplified by R. J. Mathar, Nov 18 2010
STATUS
approved