OFFSET
0,5
COMMENTS
Number of chiral bracelets of n beads using up to three different colors.
FORMULA
G.f.: k=3, (1 - Sum_{n>=1} phi(n)*log(1 - k*x^n)/n - Sum_{i=0..2} binomial(k,i)*x^i / (1 - k*x^2))/2.
For n > 0, a(n) = -(k^floor((n+1)/2) + k^ceiling((n+1)/2))/4 + (1/2n)* Sum_{d|n} phi(d)*k^(n/d), where k=3 is the maximum number of colors. - Robert A. Russell, Sep 24 2018
EXAMPLE
Example: The 3 orientable necklaces with 4 beads and the colors A, B and C are AABC, BBAC and CCAB. The turned-over necklaces AACB, BBCA and CCBA are not included in the count.
For n=6, the three chiral pairs using just two colors are AABABB-AABBAB, AACACC-AACCAC, and BBCBCC-BBCCBC. The other 35 use three colors. - Robert A. Russell, Sep 24 2018
MATHEMATICA
mx=40; f[x_, k_]:=(1-Sum[EulerPhi[n]*Log[1-k*x^n]/n, {n, 1, mx}]-Sum[Binomial[k, i]*x^i, {i, 0, 2}]/(1-k*x^2))/2; CoefficientList[Series[f[x, 3], {x, 0, mx}], x]
k=3; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/(2n) -(k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2])/4, {n, 1, 30}], 0] (* Robert A. Russell, Sep 24 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Herbert Kociemba, Nov 24 2016
STATUS
approved