The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A278638 Numbers n such that 1/n is a difference of Egyptian fractions with all denominators < n. 2
 6, 12, 15, 18, 20, 21, 24, 28, 30, 33, 35, 36, 40, 42, 44, 45, 48, 52, 54, 55, 56, 60, 63, 65, 66, 68, 70, 72, 75, 76, 77, 78, 80, 84, 85, 88, 90, 91, 95, 96, 99, 100, 102, 104, 105, 108, 110, 112, 114, 115, 117, 119, 120, 126, 130, 132, 133, 135, 136, 138, 140, 143, 144, 145, 147, 150, 152, 153 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Numbers n such that we can write 1/n = Sum_{1<=k1 (cf. A328226). Contains A001284, because 1/(m*k) = 1/(m*(k-m))-1/(k*(k-m)). Disjoint from A000961. 2*p^k with p prime is in the sequence if and only if p=3. 3*p^k with p prime is in the sequence if and only if p=2,5,7 or 11. 4*p^k with p prime is in the sequence if and only if p=3,5,7,11,13,17 or 19. For each m that is not a term, there are only finitely many primes p such that some m*p^k is a term. [Corrected by Max Alekseyev, Oct 08 2019] LINKS Robert Israel, Table of n, a(n) for n = 1..431 Robert Israel, Examples for n = 1..431 Robert Israel, 1/n as a difference of Egyptian fractions with all denominators < n, Math StackExchange, 2017. EXAMPLE 44 is in the sequence because 1/44 = (1/12 + 1/33) - 1/11. 4 is not in the sequence because 1/4 can't be written as the difference of sums of two subsets of {1, 1/2, 1/3}. MAPLE N:= 200: # to get all terms <= N V:= Vector(N): f:= proc(n)  option remember; local F, E, p, e, k, m, L, L1, i, s, t, sg, Maybe; global Rep;   F:= numtheory:-factorset(n);   if nops(F) = 1 then return false fi;   if ormap(m -> n < m^2 and m^2 < 2*n, numtheory:-divisors(n)) then     for m in numtheory:-divisors(n) do       if n < m^2 and m^2 < 2*n then         k:= n/m; Rep[n]:= [m*(k-m), -k*(k-m)]; return true       fi     od   fi;   F:= convert(F, list);   E:= map(p -> padic:-ordp(n, p), F);   i:= max[index](zip(`^`, F, E));   p:= F[i];   e:= E[i];   k:= n/p^e;   Maybe:= false;   for i from 3^(k-1) to 2*3^(k-1)-1 do     L:= (-1) +~ convert(i, base, 3);     s:= 1/k - add(L[i]/i, i=1..k-1);     if numer(s) mod p = 0 then     Maybe:= true;       t:= abs(s/p^e); sg:= signum(s);       if  (numer(t) <= 1 and (denom(t) < n or (denom(t) < N and V[denom(t)] = 1))) or (numer(t) = 2 and denom(t) < N and V[denom(t)] = 1) then          L1:= subs(0=NULL, [seq(L[i]*i*p^e, i=1..k-1)]);          if t = 0 then ;          elif numer(t) = 1 and denom(t) < n then L1:= [op(L1), sg/t]          elif procname(2/t) then             L1:= ([op(L1), 2*sg/t, op(expand(sg*Rep[2/t]))])          else next          fi;          if max(abs~(L1)) < n then Rep[n]:= L1; return true fi;       fi;     fi   od:   if Maybe then printf("Warning: %d is uncertain\n", n) else false fi; end proc: for n from 6 to N do   if V[n] = 0 and f(n) then     V[n] := 1;     for j from 2*n to N by n do       if not assigned(Rep[j]) then         V[j]:= 1;         Rep[j] := map(`*`, Rep[n], j/n);         f(j):= true;       fi     od;   fi; od: select(t -> V[t]=1, [\$6..N]); MATHEMATICA sol[n_] := Module[{c, cc}, cc = Array[c, n-1]; FindInstance[AllTrue[cc, -1 <= # <= 1&] && 1/n == Total[cc/Range[n-1]], cc, Integers, 1]]; Reap[For[n = 6, n <= 200, n++, If[sol[n] != {}, Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Jul 29 2020 *) CROSSREFS Cf. A000961, A001284, A072207. Contains A005279. - Robert G. Wilson v, Nov 27 2016 Sequence in context: A142338 A114304 A175952 * A208770 A219095 A107487 Adjacent sequences:  A278635 A278636 A278637 * A278639 A278640 A278641 KEYWORD nonn AUTHOR Robert Israel, Nov 24 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 15 04:03 EDT 2021. Contains 343909 sequences. (Running on oeis4.)