login
A350787
Convolution of A001654 and A007598.
0
0, 0, 1, 3, 12, 38, 122, 372, 1119, 3301, 9624, 27756, 79380, 225384, 636061, 1785639, 4990116, 13889618, 38524238, 106514652, 293668923, 807608137, 2215854384, 6066935640, 16579195560, 45226399440, 123173004985, 334955873739, 909611388732, 2466965351678, 6682629071522
OFFSET
0,4
COMMENTS
Note that A001654(n) = F(n)*F(n+1) and A007598(n) = F(n)^2, for F(n) = A000045(n), the n-th Fibonacci number.
FORMULA
a(n) = Sum_{i=0..n} F(i)*F(i+1)*F(n-i)^2.
a(n) = ((n + 2)/5)*F(n)*F(n+1) - (3/25)*(F(2*n+2) + (n + 1)*(-1)^(n + 1)).
G.f.: x^2*(1-x)/((x+1)*(x^2-3*x+1))^2.
a(n) = 4*a(n-1) - 10*a(n-3) + 4*a(n-5) - a(n-6) for n > 5. - Amiram Eldar, Jan 17 2022
EXAMPLE
For n=2, a(2) = F(0)*F(1)*F(2)^2 + F(1)*F(2)*F(1)^2 + F(2)*F(3)*F(0)^2 = 1.
MATHEMATICA
Table[Sum[Fibonacci[i]*Fibonacci[i + 1]*Fibonacci[n - i]^2, {i, 0, n}], {n, 0, 30}]
PROG
(PARI) a(n) = sum(i=0, n, fibonacci(i)*fibonacci(i+1)*fibonacci(n-i)^2); \\ Michel Marcus, Jan 17 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Greg Dresden, Jan 16 2022
STATUS
approved