login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338557
Products of three distinct prime numbers of even index.
6
273, 399, 609, 741, 777, 903, 1113, 1131, 1281, 1443, 1491, 1653, 1659, 1677, 1729, 1869, 2067, 2109, 2121, 2247, 2373, 2379, 2451, 2639, 2751, 2769, 2919, 3021, 3081, 3171, 3219, 3367, 3423, 3471, 3477, 3633, 3741, 3801, 3857, 3913, 3939, 4047, 4053, 4173
OFFSET
1,1
COMMENTS
All terms are odd.
Also sphenic numbers (A007304) with all even prime indices (A031215).
Also Heinz numbers of strict integer partitions with 3 parts, all of which are even. These partitions are counted by A001399.
EXAMPLE
The sequence of terms together with their prime indices begins:
273: {2,4,6} 1869: {2,4,24} 3219: {2,10,12}
399: {2,4,8} 2067: {2,6,16} 3367: {4,6,12}
609: {2,4,10} 2109: {2,8,12} 3423: {2,4,38}
741: {2,6,8} 2121: {2,4,26} 3471: {2,6,24}
777: {2,4,12} 2247: {2,4,28} 3477: {2,8,18}
903: {2,4,14} 2373: {2,4,30} 3633: {2,4,40}
1113: {2,4,16} 2379: {2,6,18} 3741: {2,10,14}
1131: {2,6,10} 2451: {2,8,14} 3801: {2,4,42}
1281: {2,4,18} 2639: {4,6,10} 3857: {4,8,10}
1443: {2,6,12} 2751: {2,4,32} 3913: {4,6,14}
1491: {2,4,20} 2769: {2,6,20} 3939: {2,6,26}
1653: {2,8,10} 2919: {2,4,34} 4047: {2,8,20}
1659: {2,4,22} 3021: {2,8,16} 4053: {2,4,44}
1677: {2,6,14} 3081: {2,6,22} 4173: {2,6,28}
1729: {4,6,8} 3171: {2,4,36} 4179: {2,4,46}
MATHEMATICA
Select[Range[1000], SquareFreeQ[#]&&PrimeOmega[#]==3&&OddQ[Times@@(1+PrimePi/@First/@FactorInteger[#])]&]
PROG
(PARI) isok(m) = my(f=factor(m)); (bigomega(f)==3) && (omega(f)==3) && (#select(x->(x%2), apply(primepi, f[, 1]~)) == 0); \\ Michel Marcus, Nov 10 2020
(Python)
from itertools import filterfalse
from math import isqrt
from sympy import primepi, primerange, nextprime, integer_nthroot
def A338557(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return int(n+x-sum((primepi(x//(k*m))>>1)-(b>>1) for a, k in filterfalse(lambda x:x[0]&1, enumerate(primerange(3, integer_nthroot(x, 3)[0]+1), 2)) for b, m in filterfalse(lambda x:x[0]&1, enumerate(primerange(nextprime(k)+1, isqrt(x//k)+1), a+2))))
return bisection(f, n, n) # Chai Wah Wu, Oct 18 2024
CROSSREFS
For the following, NNS means "not necessarily strict".
A007304 allows all prime indices (not just even) (NNS: A014612).
A046389 allows all odd primes (NNS: A046316).
A258117 allows products of any length (NNS: A066207).
A307534 is the version for odds instead of evens (NNS: A338471).
A337453 is a different ranking of ordered triples (NNS: A014311).
A338556 is the NNS version.
A001399(n-6) counts strict 3-part partitions (NNS: A001399(n-3)).
A005117 lists squarefree numbers, with even case A039956.
A078374 counts 3-part relatively prime strict partitions (NNS: A023023).
A075819 lists even Heinz numbers of strict triples (NNS: A075818).
A220377 counts 3-part pairwise coprime strict partitions (NNS: A307719).
A258116 lists squarefree numbers with all odd prime indices (NNS: A066208).
A285508 lists Heinz numbers of non-strict triples.
Sequence in context: A043821 A217004 A256638 * A347882 A347888 A306812
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 08 2020
STATUS
approved