Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Oct 18 2024 18:07:52
%S 273,399,609,741,777,903,1113,1131,1281,1443,1491,1653,1659,1677,1729,
%T 1869,2067,2109,2121,2247,2373,2379,2451,2639,2751,2769,2919,3021,
%U 3081,3171,3219,3367,3423,3471,3477,3633,3741,3801,3857,3913,3939,4047,4053,4173
%N Products of three distinct prime numbers of even index.
%C All terms are odd.
%C Also sphenic numbers (A007304) with all even prime indices (A031215).
%C Also Heinz numbers of strict integer partitions with 3 parts, all of which are even. These partitions are counted by A001399.
%e The sequence of terms together with their prime indices begins:
%e 273: {2,4,6} 1869: {2,4,24} 3219: {2,10,12}
%e 399: {2,4,8} 2067: {2,6,16} 3367: {4,6,12}
%e 609: {2,4,10} 2109: {2,8,12} 3423: {2,4,38}
%e 741: {2,6,8} 2121: {2,4,26} 3471: {2,6,24}
%e 777: {2,4,12} 2247: {2,4,28} 3477: {2,8,18}
%e 903: {2,4,14} 2373: {2,4,30} 3633: {2,4,40}
%e 1113: {2,4,16} 2379: {2,6,18} 3741: {2,10,14}
%e 1131: {2,6,10} 2451: {2,8,14} 3801: {2,4,42}
%e 1281: {2,4,18} 2639: {4,6,10} 3857: {4,8,10}
%e 1443: {2,6,12} 2751: {2,4,32} 3913: {4,6,14}
%e 1491: {2,4,20} 2769: {2,6,20} 3939: {2,6,26}
%e 1653: {2,8,10} 2919: {2,4,34} 4047: {2,8,20}
%e 1659: {2,4,22} 3021: {2,8,16} 4053: {2,4,44}
%e 1677: {2,6,14} 3081: {2,6,22} 4173: {2,6,28}
%e 1729: {4,6,8} 3171: {2,4,36} 4179: {2,4,46}
%t Select[Range[1000],SquareFreeQ[#]&&PrimeOmega[#]==3&&OddQ[Times@@(1+PrimePi/@First/@FactorInteger[#])]&]
%o (PARI) isok(m) = my(f=factor(m)); (bigomega(f)==3) && (omega(f)==3) && (#select(x->(x%2), apply(primepi, f[,1]~)) == 0); \\ _Michel Marcus_, Nov 10 2020
%o (Python)
%o from itertools import filterfalse
%o from math import isqrt
%o from sympy import primepi, primerange, nextprime, integer_nthroot
%o def A338557(n):
%o def bisection(f,kmin=0,kmax=1):
%o while f(kmax) > kmax: kmax <<= 1
%o while kmax-kmin > 1:
%o kmid = kmax+kmin>>1
%o if f(kmid) <= kmid:
%o kmax = kmid
%o else:
%o kmin = kmid
%o return kmax
%o def f(x): return int(n+x-sum((primepi(x//(k*m))>>1)-(b>>1) for a,k in filterfalse(lambda x:x[0]&1,enumerate(primerange(3,integer_nthroot(x,3)[0]+1),2)) for b,m in filterfalse(lambda x:x[0]&1,enumerate(primerange(nextprime(k)+1,isqrt(x//k)+1),a+2))))
%o return bisection(f,n,n) # _Chai Wah Wu_, Oct 18 2024
%Y For the following, NNS means "not necessarily strict".
%Y A007304 allows all prime indices (not just even) (NNS: A014612).
%Y A046389 allows all odd primes (NNS: A046316).
%Y A258117 allows products of any length (NNS: A066207).
%Y A307534 is the version for odds instead of evens (NNS: A338471).
%Y A337453 is a different ranking of ordered triples (NNS: A014311).
%Y A338556 is the NNS version.
%Y A001399(n-6) counts strict 3-part partitions (NNS: A001399(n-3)).
%Y A005117 lists squarefree numbers, with even case A039956.
%Y A078374 counts 3-part relatively prime strict partitions (NNS: A023023).
%Y A075819 lists even Heinz numbers of strict triples (NNS: A075818).
%Y A220377 counts 3-part pairwise coprime strict partitions (NNS: A307719).
%Y A258116 lists squarefree numbers with all odd prime indices (NNS: A066208).
%Y A285508 lists Heinz numbers of non-strict triples.
%Y Cf. A000217, A001221, A001222, A037144, A056239, A112798, A337605.
%K nonn
%O 1,1
%A _Gus Wiseman_, Nov 08 2020