OFFSET
1,1
COMMENTS
The enumeration of these partitions by sum is given by A001399.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
EXAMPLE
The sequence of terms together with their prime indices begins:
110: {1,3,5}
170: {1,3,7}
230: {1,3,9}
310: {1,3,11}
374: {1,5,7}
410: {1,3,13}
470: {1,3,15}
506: {1,5,9}
590: {1,3,17}
670: {1,3,19}
682: {1,5,11}
730: {1,3,21}
782: {1,7,9}
830: {1,3,23}
902: {1,5,13}
935: {3,5,7}
970: {1,3,25}
1030: {1,3,27}
1034: {1,5,15}
1054: {1,7,11}
MATHEMATICA
Select[Range[1000], SquareFreeQ[#]&&PrimeNu[#]==3&&OddQ[Times@@PrimePi/@First/@FactorInteger[#]]&]
PROG
(Python)
from math import isqrt
from sympy import primepi, primerange, integer_nthroot, nextprime
def A307534(n):
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
def f(x): return int(n+x-sum((primepi(x//(k*m))+1>>1)-(b+1>>1) for a, k in filter(lambda x:x[0]&1, enumerate(primerange(2, integer_nthroot(x, 3)[0]+1), 1)) for b, m in filter(lambda x:x[0]&1, enumerate(primerange(nextprime(k)+1, isqrt(x//k)+1), a+2))))
return bisection(f, n, n) # Chai Wah Wu, Oct 20 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 13 2019
STATUS
approved