login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307532
a(n) is the smallest k > 2^(2^n)+1 such that 2^(k-1) == 1 (mod (2^(2^n)-1)*k).
1
5, 7, 29, 281, 65617, 4294967681, 18446744073709552577, 340282366920938463463374607431768211841, 115792089237316195423570985008687907853269984665640564039457584007913129642241
OFFSET
0,1
COMMENTS
a(n) is smallest k > 2^(2^n)+1 such that k == 1 (mod 2^n) and 2^(k-1) == 1 (mod k), so a(n) is an odd prime or a Fermat pseudoprime to base 2.
a(n) is the least k = 2^(2^n) + m*2^n + 1 for m > 0 such that 2^(k-1) == 1 (mod k).
The values of m = (a(n)-2^(2^n)-1)/2^n are 2, 1, 3, 3, 5, 12, 15, 3, 9, 202, 56, 304, 635, 11095, 8948, ...; is m = A307535(n) for all n > 4?
Conjecture: a(n) is prime for all n >= 0.
FORMULA
a(n) == 1 (mod 2^n).
MATHEMATICA
a[n_] := Module[{k = 2^(2^n) + 2}, While[PowerMod[2, k - 1, (2^(2^n) - 1)*k] != 1, k++]; k]; Array[a, 10, 0]
PROG
(PARI) a(n) = my(k=2^(2^n)+2); while( Mod(2, (2^(2^n)-1)*k)^(k-1) != 1, k++); k; \\ Michel Marcus, Apr 25 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar and Thomas Ordowski, Apr 13 2019
EXTENSIONS
a(8) from Chai Wah Wu, Apr 29 2019
STATUS
approved