login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135324
a(n) = Sum_{k=1..phi(n)} k*t(k), where t(k) is the k-th positive integer which is coprime to n and phi(n) is the number of positive integers which are <= n and are coprime to n.
1
1, 1, 5, 7, 30, 11, 91, 50, 120, 64, 385, 76, 650, 191, 354, 372, 1496, 243, 2109, 468, 1081, 795, 3795, 560, 3450, 1336, 3033, 1432, 7714, 692, 9455, 2856, 4595, 3056, 6974, 1836, 16206, 4299, 7766, 3576, 22140, 2126, 25585, 6100, 8922, 7711, 33511
OFFSET
1,3
FORMULA
a(n) = Sum_{k=1..A000010(n)} k*A126572(n,k). - R. J. Mathar, Jan 30 2008
EXAMPLE
The positive integers that are coprime to 12 and are <= 12 are 1,5,7,11. So a(12) = 1*1 + 2*5 + 3*7 + 4*11 = 1+10+21+44 =76.
MAPLE
A126572 := proc(n, k) local a, i ; a := 1 ; for i from 1 to k do if i = k then RETURN(a) ; fi ; a := a+1 ; while gcd(a, n) <> 1 do a := a+1 ; od; od: end: A135324 := proc(n) add( k*A126572(n, k), k=1..numtheory[phi](n)) ; end: for n from 1 to 80 do printf("%d, ", A135324(n) ) ; od: # R. J. Mathar, Jan 30 2008
CROSSREFS
Sequence in context: A153411 A081630 A307532 * A107639 A069688 A158323
KEYWORD
nonn
AUTHOR
Leroy Quet, Dec 06 2007
EXTENSIONS
More terms from R. J. Mathar, Jan 30 2008
STATUS
approved