OFFSET
1,1
COMMENTS
Misak and Ulas prove that the density of primes with k ones is 1/(Fibonacci(k+3)*Fibonacci(k+1)) = 1/3, here with k=1 (a single 1).
LINKS
Piotr Miska, Maciej Ulas, On consecutive 1's in continued fractions expansions of square roots of prime numbers, arXiv:1904.03404 [math.NT], 2019. See Corollary 4.3. p. 13.
EXAMPLE
PROG
(PARI) isok(p) = my(cf = contfrac(sqrt(p))); (cf[2] == 1) && (cf[3] != 1);
lista(nn) = forprime(p=2, nn, if (isok(p), print1(p, ", ")));
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Marcus, Apr 13 2019
STATUS
approved