login
A307530
Primes p for which the continued fraction expansion of sqrt(p) has a single 1 starting at second position.
0
3, 23, 47, 59, 61, 79, 97, 137, 139, 163, 167, 191, 193, 223, 251, 281, 283, 313, 317, 349, 353, 359, 389, 397, 431, 433, 439, 479, 521, 523, 563, 569, 571, 613, 617, 619, 659, 661, 673, 719, 727, 769, 773, 823, 827, 829, 839, 881, 883, 887, 941, 947, 953, 1009
OFFSET
1,1
COMMENTS
Misak and Ulas prove that the density of primes with k ones is 1/(Fibonacci(k+3)*Fibonacci(k+1)) = 1/3, here with k=1 (a single 1).
EXAMPLE
For p = 3, we have [1; 1, 2, ...]; see A040001.
For p = 27, we have [4; 1, 3, ...]; see A010127.
For p = 47, we have [6; 1, 5, ...]; see A010137.
PROG
(PARI) isok(p) = my(cf = contfrac(sqrt(p))); (cf[2] == 1) && (cf[3] != 1);
lista(nn) = forprime(p=2, nn, if (isok(p), print1(p, ", ")));
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Marcus, Apr 13 2019
STATUS
approved