|
|
A338317
|
|
Number of integer partitions of n with no 1's and pairwise coprime distinct parts, where a singleton is always considered coprime.
|
|
3
|
|
|
1, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 11, 11, 16, 16, 19, 25, 32, 34, 44, 46, 53, 66, 80, 88, 101, 116, 132, 150, 180, 204, 229, 254, 287, 331, 366, 426, 473, 525, 584, 662, 742, 835, 922, 1013, 1128, 1262, 1408, 1555, 1711, 1894, 2080, 2297, 2555, 2806, 3064, 3376
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
LINKS
|
|
|
FORMULA
|
The Heinz numbers of these partitions are given by A338316. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.
|
|
EXAMPLE
|
The a(2) = 1 through a(12) = 11 partitions (A = 10, B = 11, C = 12):
2 3 4 5 6 7 8 9 A B C
22 32 33 43 44 54 55 65 66
222 52 53 72 73 74 75
322 332 333 433 83 444
2222 522 532 92 543
3222 3322 443 552
22222 533 732
722 3333
3332 5322
5222 33222
32222 222222
|
|
MATHEMATICA
|
Table[Length[Select[IntegerPartitions[n], !MemberQ[#, 1]&&(SameQ@@#||CoprimeQ@@Union[#])&]], {n, 0, 15}]
|
|
CROSSREFS
|
A200976 (A338318) gives the pairwise non-coprime instead of coprime version.
A328673 (A328867) gives partitions with no distinct relatively prime parts.
A337485 (A337984) gives pairwise coprime integer partitions with no 1's.
A337665 (A333228) gives compositions with pairwise coprime distinct parts.
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|