OFFSET
1,4
FORMULA
a(n)=A000041(ceiling(n/2))-1/2+(-1)^n/2 - Benoit Cloitre, Apr 28 2003
EXAMPLE
a(7)=4 as floor(7/2)=3 and the three-element partitions of 7 are (5, 1, 1), (4, 2, 1), (3, 3, 1), (3, 2, 2).
MAPLE
P := proc(n, k) option remember: if(k=1) then RETURN(1) elif(k<1 or n<1 or k>n) then RETURN(0) else RETURN(P(n-1, k-1)+P(n-k, k)) fi:end; seq(P(n, floor(n/2)), n=1..60);
P := proc(n, k) option remember: if(k<1 or n<1 or k>n) then RETURN(0) elif(k=1) then RETURN(1) else RETURN(P(n-1, k-1)+P(n-k, k)) fi:end; seq(P(n, floor(n/2)), n=1..60);
PROG
(PARI) a(n)=polcoeff(1/eta(x), ceil(n/2))-n%2
CROSSREFS
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Dec 28 2001
EXTENSIONS
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 18 2003 and Apr 21 2003
STATUS
approved