login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A066639
Number of partitions of n with floor(n/2) parts.
1
0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 10, 11, 14, 15, 21, 22, 29, 30, 41, 42, 55, 56, 76, 77, 100, 101, 134, 135, 175, 176, 230, 231, 296, 297, 384, 385, 489, 490, 626, 627, 791, 792, 1001, 1002, 1254, 1255, 1574, 1575, 1957, 1958, 2435, 2436, 3009, 3010, 3717, 3718, 4564
OFFSET
1,4
FORMULA
a(n)=A000041(ceiling(n/2))-1/2+(-1)^n/2 - Benoit Cloitre, Apr 28 2003
EXAMPLE
a(7)=4 as floor(7/2)=3 and the three-element partitions of 7 are (5, 1, 1), (4, 2, 1), (3, 3, 1), (3, 2, 2).
MAPLE
P := proc(n, k) option remember: if(k=1) then RETURN(1) elif(k<1 or n<1 or k>n) then RETURN(0) else RETURN(P(n-1, k-1)+P(n-k, k)) fi:end; seq(P(n, floor(n/2)), n=1..60);
P := proc(n, k) option remember: if(k<1 or n<1 or k>n) then RETURN(0) elif(k=1) then RETURN(1) else RETURN(P(n-1, k-1)+P(n-k, k)) fi:end; seq(P(n, floor(n/2)), n=1..60);
PROG
(PARI) a(n)=polcoeff(1/eta(x), ceil(n/2))-n%2
CROSSREFS
Sequence in context: A100665 A114095 A301513 * A370808 A111212 A338317
KEYWORD
nonn
AUTHOR
Amarnath Murthy, Dec 28 2001
EXTENSIONS
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 18 2003 and Apr 21 2003
STATUS
approved