login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329482
Interleave 1 - n + 3*n^2, 1 + 3*n*(1+n) for n >= 0.
1
1, 1, 3, 7, 11, 19, 25, 37, 45, 61, 71, 91, 103, 127, 141, 169, 185, 217, 235, 271, 291, 331, 353, 397, 421, 469, 495, 547, 575, 631, 661, 721, 753, 817, 851, 919, 955, 1027, 1065, 1141, 1181, 1261
OFFSET
0,3
COMMENTS
a(n+1) - 2*a(n) = -1, 1, 1, -3, -3, -13, -13, -29, -29, ...
Hexagonal spiral for A000265:
.
17--35---9--37
/
33 17---9--19---5
/ / \
1 1 3---7---1 21
/ / / \ \
31 15 5 1---1 9 11
\ \ \ / / /
15 7 1---3 5 23
\ \ / /
29 13---3--11 3
\ /
7--27--13--25
.
The two sequences are perpendicular.
a(n+1) - a(n) = 0, 2, 4, 4, 8, 6, 12, ... = 2*A029578(n+2).
A003215 is a bisection of 1, 1, 13, 7, 49, 19, 109, 37, ... .
FORMULA
From Colin Barker, Nov 14 2019: (Start)
G.f.: (1 + 4*x^3 + x^4) / ((1 - x)^3*(1 + x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n > 4.
a(n) = (5 + 3*(-1)^n - 2*(1 + (-1)^n)*n + 6*n^2) / 8.
(End)
E.g.f.: (1/8)*exp(-x)*(3 + 2*x + exp(2*x)*(5 + 4*x + 6*x^2)). - Stefano Spezia, Nov 14 2019 after Colin Barker
a(-n) = 1, 1, 5, 7, 15, 19, ... = interleave 1 + n + 3*n^2, 1 + 3*n*(1+n), both in the spiral.
MATHEMATICA
LinearRecurrence[{1, 2, -2, -1, 1}, {1, 1, 3, 7, 11}, 42] (* Amiram Eldar, Nov 23 2019 *)
Module[{nn=20, a, b}, a=Table[1-n+3 n^2, {n, 0, nn}]; b=Table[1+3n(1+n), {n, 0, nn}]; Riffle[a, b]] (* Harvey P. Dale, Apr 30 2023 *)
PROG
(PARI) Vec((1 + 4*x^3 + x^4) / ((1 - x)^3*(1 + x)^2) + O(x^40)) \\ Colin Barker, Nov 15 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Nov 14 2019
STATUS
approved