|
|
A181497
|
|
a(n) is the smallest m such that A056753(m) = 2*n + 1.
|
|
3
|
|
|
0, 1, 3, 7, 11, 19, 27, 35, 43, 59, 75, 91, 107, 123, 139, 155, 171, 203, 235, 267, 299, 331, 363, 395, 427, 459, 491, 523, 555, 587, 619, 651, 683, 747, 811, 875, 939, 1003, 1067, 1131, 1195, 1259, 1323, 1387, 1451, 1515, 1579, 1643, 1707, 1771, 1835, 1899
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
|
|
LINKS
|
|
|
MAPLE
|
a:= proc(n) option remember; `if`(n<2, n,
(h-> 2*a(n-h)-1+2*a(h))(iquo(n, 2)))
end:
|
|
MATHEMATICA
|
a[n_] := a[n] = If[n < 2, n, 2 a[n-#] - 1 + 2 a[#]&[Quotient[n, 2]]];
|
|
PROG
|
(Magma) T:=[]; S:=[ 0: n in [1..2000] ]; k:=1; p:=Position(S, 0, 1); while p gt 0 do for j in [p..#S by k+1] do if S[j] eq 0 then S[j]:=k; else break; end if; end for; f:=p; Append(~T, p-1); p:=Position(S, 0, f); k+:=2; end while; T; // Klaus Brockhaus, Oct 25 2010
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|