login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181495
Positions of the incrementally largest terms in continued fraction for 2^(1/3).
2
1, 2, 4, 10, 12, 32, 36, 572, 1991, 20857, 27432, 28763, 155122, 190271, 288108, 484709, 1395499, 9370521, 12918396, 22646948, 49496125, 73469408, 172128260, 645676547
OFFSET
1,2
COMMENTS
The corresponding records (or high-water marks) in A002945, the continued fraction for 2^(1/3), are {1, 3, 5, 8, 14, 15, 534, 7451, 12737, 22466, 68346, 148017, 217441, 320408, 533679, 4156269, 4886972, 10253793, ...} - see A268515.
It is not known if this sequence is infinite (i.e., whether the continued fraction expansion is bounded). [Davenport]. - N. J. A. Sloane, Feb 07 2016
REFERENCES
H. Davenport, The Higher Arithmetic: An Introduction to the Theory of Numbers, Cambridge, 2008.
MATHEMATICA
Use Max[ContinuedFraction[2^(1/3), n]] for some positive integer n, e.g. Max[ContinuedFraction[2^(1/3), 288108]].
cf = ContinuedFraction[2^(1/3), 20000000]; mx = 0; k = 1; lst = {}; While[k < 20000000, If[ cf[[k]] > mx, mx = cf[[k]]; AppendTo[lst, k]; Print[{k, cf[[k]]}]]; k++ ]; lst (* Robert G. Wilson v, Oct 24 2010 *)
CROSSREFS
Sequence in context: A034166 A301338 A364667 * A092367 A366773 A216814
KEYWORD
nonn,more
AUTHOR
John M. Campbell, Oct 23 2010
EXTENSIONS
a(19) from Robert G. Wilson v, Oct 24 2010
a(20)-a(21) from Zak Seidov, Feb 08 2016
a(22)-a(24) from Hans Havermann, Feb 08 2016
STATUS
approved