login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216814
Given n and a constant C, define a sequence b(m) by the recurrence in the comments; a(n) = smallest positive integer C such that for some prime p the denominators of all b(m) are powers of p (conjectured).
0
2, 4, 10, 12, 84, 264, 990, 2860, 9724, 18564, 117572, 45220, 19380, 1782960, 6463230, 25092540, 58549260, 95527740
OFFSET
2,1
COMMENTS
The sequence b(m) is defined by b(1)=C, and for m>=2, b(m) = (1/(2*binomial(m+n-1,m-1))) * Sum_{k=1..m-1} binomial(m+n-1,m-k-1)*binomial(m+n-1,k-1)*b(k)*b(m-k).
For n=2..19, the corresponding primes p are 3, 5, 7, 7, 11, 13, 13, 17, 19, 19, 23, 23, 23, 29, 31, 31, 31, 37.
The terms up to a(19) have been obtained by generating the first 2000 terms of the relative sequences. - Giovanni Resta, Oct 07 2019
LINKS
Tewodros Amdeberhan, Victor H. Moll and Christophe Vignat, A probabilistic interpretation of a sequence related to Narayana Polynomials, arXiv:1202.1203 [math.NT], 2012.
Tewodros Amdeberhan, Victor H. Moll and Christophe Vignat, A probabilistic interpretation of a sequence related to Narayana Polynomials, Online Journal of Analytic Combinatorics, Issue 8, 2013. - From N. J. A. Sloane, Sep 19 2012
MATHEMATICA
ppQ[n_] := n == 1 || PrimePowerQ[n]; isOk[n_, c_, mmax_] := Block[{d, p=1, ret=True, vb = 0 Range@ mmax}, vb[[1]] = c; Do[ vb[[m]] = (1/(2 * Binomial[m+n-1, m-1]) Sum[ Binomial[ m+n-1, m-k-1] * Binomial[m+n-1, k-1] * vb[[k]]*vb[[m - k]], {k, m-1}]); If[! ppQ[d = Denominator[vb[[m]]]], ret = False; Break[]]; If[d != 1, d = FactorInteger[d][[1, 1]]; If[p == 1, p = d, If[p != d, ret = False; Break[]]]], {m, 2, mmax}]; ret]; a[n_] := Block[{c = 1}, While[! isOk[n, c, 100], c++]; c]; a/@ Range[2, 10] (* Giovanni Resta, Oct 07 2019 *)
PROG
(PARI) ispp(n) = (n==1) || isprimepower(n);
isokC(n, C, mmax) = {my(vb = vector(mmax)); vb[1] = C; for (m=2, mmax, vb[m] = (1/(2*binomial(m+n-1, m-1))*sum(k=1, m-1, binomial(m+n-1, m-k-1)*binomial(m+n-1, k-1)*vb[k]*vb[m-k])); if (!ispp(denominator(vb[m])), return (0)); ); return (1); }
a(n) = {my(C=1, mmax = 1000); while(!isokC(n, C, mmax), C++); C; } \\ Michel Marcus, Sep 29 2019
CROSSREFS
Sequence in context: A181495 A092367 A366773 * A180427 A127591 A100912
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Sep 20 2012
EXTENSIONS
Conjectured added to name and a(10)-a(15) from Michel Marcus, Oct 06 2019
a(16)-a(19) from Giovanni Resta, Oct 07 2019
STATUS
approved