login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346912
a(0) = 1; a(n) = a(n-1) + a(floor(n/2)) + 1.
0
1, 3, 7, 11, 19, 27, 39, 51, 71, 91, 119, 147, 187, 227, 279, 331, 403, 475, 567, 659, 779, 899, 1047, 1195, 1383, 1571, 1799, 2027, 2307, 2587, 2919, 3251, 3655, 4059, 4535, 5011, 5579, 6147, 6807, 7467, 8247, 9027, 9927, 10827, 11875, 12923, 14119, 15315
OFFSET
0,2
FORMULA
G.f.: (1/(1 - x)) * (-1 + 2 * Product_{k>=0} 1/(1 - x^(2^k))).
a(n) = n + 1 + Sum_{k=1..n} a(floor(k/2)).
a(n) = 2 * A000123(n) - 1.
a(n) = 4 * A033485(n) - 1 for n > 0. - Hugo Pfoertner, Aug 12 2021
From Michael Tulskikh, Aug 12 2021: (Start)
2*a(2n) = a(2n-1) + a(2n+1).
a(2n) = a(2n-2) + a(n-1) + a(n) + 2.
a(2n) = 2*(Sum_{i=0..n} a(i)) - a(n) + 2n. (End)
MATHEMATICA
a[0] = 1; a[n_] := a[n] = a[n - 1] + a[Floor[n/2]] + 1; Table[a[n], {n, 0, 47}]
nmax = 47; CoefficientList[Series[(1/(1 - x)) (-1 + 2 Product[1/(1 - x^(2^k)), {k, 0, Floor[Log[2, nmax]]}]), {x, 0, nmax}], x]
PROG
(Python)
from itertools import islice
from collections import deque
def A346912_gen(): # generator of terms
aqueue, f, b, a = deque([2]), True, 1, 2
yield from (1, 3, 7)
while True:
a += b
yield 4*a - 1
aqueue.append(a)
if f: b = aqueue.popleft()
f = not f
A346912_list = list(islice(A346912_gen(), 40)) # Chai Wah Wu, Jun 08 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 11 2021
STATUS
approved