login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0) = 1; a(n) = a(n-1) + a(floor(n/2)) + 1.
0

%I #42 Jun 08 2022 16:22:32

%S 1,3,7,11,19,27,39,51,71,91,119,147,187,227,279,331,403,475,567,659,

%T 779,899,1047,1195,1383,1571,1799,2027,2307,2587,2919,3251,3655,4059,

%U 4535,5011,5579,6147,6807,7467,8247,9027,9927,10827,11875,12923,14119,15315

%N a(0) = 1; a(n) = a(n-1) + a(floor(n/2)) + 1.

%F G.f.: (1/(1 - x)) * (-1 + 2 * Product_{k>=0} 1/(1 - x^(2^k))).

%F a(n) = n + 1 + Sum_{k=1..n} a(floor(k/2)).

%F a(n) = 2 * A000123(n) - 1.

%F a(n) = 4 * A033485(n) - 1 for n > 0. - _Hugo Pfoertner_, Aug 12 2021

%F From _Michael Tulskikh_, Aug 12 2021: (Start)

%F 2*a(2n) = a(2n-1) + a(2n+1).

%F a(2n) = a(2n-2) + a(n-1) + a(n) + 2.

%F a(2n) = 2*(Sum_{i=0..n} a(i)) - a(n) + 2n. (End)

%t a[0] = 1; a[n_] := a[n] = a[n - 1] + a[Floor[n/2]] + 1; Table[a[n], {n, 0, 47}]

%t nmax = 47; CoefficientList[Series[(1/(1 - x)) (-1 + 2 Product[1/(1 - x^(2^k)), {k, 0, Floor[Log[2, nmax]]}]), {x, 0, nmax}], x]

%o (Python)

%o from itertools import islice

%o from collections import deque

%o def A346912_gen(): # generator of terms

%o aqueue, f, b, a = deque([2]), True, 1, 2

%o yield from (1, 3, 7)

%o while True:

%o a += b

%o yield 4*a - 1

%o aqueue.append(a)

%o if f: b = aqueue.popleft()

%o f = not f

%o A346912_list = list(islice(A346912_gen(),40)) # _Chai Wah Wu_, Jun 08 2022

%Y Cf. A000123, A018819, A022907, A033485, A102378, A102379.

%K nonn

%O 0,2

%A _Ilya Gutkovskiy_, Aug 11 2021