

A191114


Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x2 and 4x1 are in a.


4



1, 3, 7, 11, 19, 27, 31, 43, 55, 75, 79, 91, 107, 123, 127, 163, 171, 219, 223, 235, 271, 299, 315, 319, 363, 367, 379, 427, 487, 491, 507, 511, 651, 655, 667, 683, 703, 811, 875, 891, 895, 939, 943, 955, 1083, 1087, 1099, 1135, 1195, 1259, 1275, 1279, 1451, 1459, 1467, 1471, 1515, 1519, 1531, 1707, 1947, 1951, 1963, 1999
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

See A191113.


LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000


MATHEMATICA

h = 3; i = 2; j = 4; k = 1; f = 1; g = 8;
a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]] (* A191114 *)
b = (a + 2)/3; c = (a + 1)/4; r = Range[1, 1200];
d = Intersection[b, r] (* A191121 *)
e = Intersection[c, r] (* A191152 *)
m = (a + 1)/2 (* divisibility property *)
p = (a + 1)/4 (* divisibility property *)


PROG

(Haskell)
import Data.Set (singleton, deleteFindMin, insert)
a191114 n = a191114_list !! (n1)
a191114_list = 1 : f (singleton 3)
where f s = m : (f $ insert (3*m2) $ insert (4*m1) s')
where (m, s') = deleteFindMin s
 Reinhard Zumkeller, Jun 01 2011


CROSSREFS

Cf. A191113.
Sequence in context: A236632 A098379 A049754 * A181497 A292095 A265323
Adjacent sequences: A191111 A191112 A191113 * A191115 A191116 A191117


KEYWORD

nonn


AUTHOR

Clark Kimberling, May 27 2011


STATUS

approved



