login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A236632
Sum of all divisors of all positive integers <= n minus the total number of divisors of all positive integers <= n.
3
0, 1, 3, 7, 11, 19, 25, 36, 46, 60, 70, 92, 104, 124, 144, 170, 186, 219, 237, 273, 301, 333, 355, 407, 435, 473, 509, 559, 587, 651, 681, 738, 782, 832, 876, 958, 994, 1050, 1102, 1184, 1224, 1312, 1354, 1432, 1504, 1572, 1618, 1732, 1786, 1873, 1941
OFFSET
1,3
LINKS
FORMULA
a(n) = A024916(n) - A006218(n).
a(n) = (1/2) * Sum_{i=1..n} floor(n/i) * floor((n-i)/i). - Wesley Ivan Hurt, Jan 30 2016
a(n) = Sum_{i=1..n} binomial(floor(n/i),2). - Wesley Ivan Hurt, May 08 2016
a(n) = Sum_{k=1..n} (k-1) * floor(n/k). - Wesley Ivan Hurt, Apr 02 2017
a(n) = (1/2)*(A222548(n) - A006218(n)). - Ridouane Oudra, Aug 01 2019
EXAMPLE
For n = 6 the sets of divisors of the positive integers <= 6 are {1}, {1, 2}, {1, 3}, {1, 2, 4}, {1, 5}, {1, 2, 3, 6}. There are 14 total divisors and their sum is 1 + 3 + 4 + 7 + 6 + 12 = 33, so a(6) = 33 - 14 = 19.
MAPLE
A236632:=n->(1/2)*add(floor(n/i)*floor((n-i)/i), i=1..n): seq(A236632(n), n=1..100); # Wesley Ivan Hurt, Jan 30 2016
N:= 1000: # to get a(1) to a(N)
A065608:= Vector(N):
for a from 1 to floor(sqrt(N)) do for b from a to N/a do
if b = a then
A065608[a*b] := A065608[a*b] + a - 1
else
A065608[a*b] := A065608[a*b] + a + b - 2;
fi
od od:
ListTools:-PartialSums(convert(A065608, list)); # Robert Israel, May 16 2016
MATHEMATICA
Table[Sum[Floor[n/i]*Floor[(n - i)/i], {i, n}]/2, {n, 50}] (* Wesley Ivan Hurt, Jan 30 2016 *)
Table[Sum[Binomial[Floor[n/i], 2], {i, n}], {n, 51}] (* Michael De Vlieger, May 15 2016 *)
Accumulate@ Table[DivisorSum[n, # - 1 &], {n, 51}] (* or *)
Table[Sum [(k - 1) Floor[n/k], {k, n}], {n, 51}] (* Michael De Vlieger, Apr 03 2017 *)
PROG
(PARI) a(n) = sum(i=1, n, sigma(i)) - sum(i=1, n, numdiv(i)); \\ Michel Marcus, Feb 01 2014
(Magma) [(&+[DivisorSigma(1, k) - DivisorSigma(0, k) : k in [1..n]]): n in [1..60]]; // Vincenzo Librandi, Aug 02 2019
(Python)
from math import isqrt
def A236632(n): return (s:=isqrt(n))**2*(1-s)+sum((q:=n//k)*((k<<1)+q-3) for k in range(1, s+1))>>1 # Chai Wah Wu, Oct 23 2023
CROSSREFS
Partial sums of A065608.
Sequence in context: A105876 A354801 A141101 * A098379 A329482 A049754
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Jan 31 2014
STATUS
approved