The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A105876 Primes for which -4 is a primitive root. 5
 3, 7, 11, 19, 23, 47, 59, 67, 71, 79, 83, 103, 107, 131, 139, 163, 167, 179, 191, 199, 211, 227, 239, 263, 271, 311, 347, 359, 367, 379, 383, 419, 443, 463, 467, 479, 487, 491, 503, 523, 547, 563, 587, 599, 607, 619, 647, 659, 719, 743, 751, 787, 823, 827, 839, 859, 863 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Also, primes for which -16 is a primitive root. For proof see following comments from Michael Somos, Aug 07 2009: Let p = 8*t + 3 be prime. It is well-known that 2 is a primitive root. We will use the obvious fact that if a primitive root is a power of another element, then that other element is also a primitive root. So -1 == 2^(4*t+1) (mod p) because 2 is primitive root. -2 == 2^(4*t+2) == 4^(2*t+1) (mod p) obvious 2 == (-4)^(2*t+1) (mod p) obvious, therefore -4 is also primitive root. 2 == 2^(8*t+3) (mod p) obviously works not just for 2 4 == 2^(8*t+4) == 16^(2*t+1) (mod p) obvious -4 == (-16)^(2*t+1) (mod p) obvious, therefore -16 is also primitive root. The case where p = 8*t + 7 is similar. From Jianing Song, Dec 24 2022: (Start) Equivalently, primes p == 3 (mod 4) such that the multiplicative order of 4 modulo p is (p-1)/2 (a subsequence of A216371). Proof of equivalence: let ord(a,k) be the multiplicative of a modulo k. First we notice that all terms are congruent to 3 modulo 4, since -4 is a quadratic residue modulo p if p == 1 (mod 4). If ord(4,p) = (p-1)/2. Note that (p-1)/2 is odd, so it is coprime to ord(-1,p) = 2. As a result, ord(-4,p) = ((p-1)/2) * 2 = p-1. Conversely, If ord(-4,p) = p-1, we must have ord(4,p) = (p-1)/2 by noting that ord(-4,p) <= lcm(2,ord(4,p)). Also primes p such that the multiplicative order of 16 modulo p is (p-1)/2. Proof: note that ord(16,p) = ord(-4,p)/gcd(ord(-4,p),2). If ord(-4,p) = p-1, then ord(16,p) = (p-1)/2. Conversely, if ord(16,p) = (p-1)/2, then ord(-4,p) = p-1, since otherwise ord(-4,p) = (p-1)/2 is odd, which is impossible since that -4 is not a quadratic residue modulo a prime p == 3 (mod 4). {(a(n)-1)/2} is the sequence of indices of fixed points of A302141. An odd prime p is a term if and only if p == 3 (mod 4) and the multiplicative order of 2 modulo p is p-1 or (p-1)/2 (p-1 if p == 3 (mod 8), (p-1)/2 if p == 7 (mod 8)). It seems that a(n) = 2*A163778(n-1) + 1 for n >= 2. (End) LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 Index entries for primes by primitive root MATHEMATICA pr=-4; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == #-1 &] (* OR *) a[p_, q_]:=Sum[2 Cos[2^n Pi/((2 q+1)(2 p+1))], {n, 1, 2 q p}] 2 Select[Range[500], Rationalize[N[a[#, 2], 20]]==1 &]+1 (* Gerry Martens, Apr 28 2015 *) PROG (PARI) is(n)=isprime(n) && n>2 && znorder(Mod(-4, n))==n-1 \\ Charles R Greathouse IV, Apr 30 2015 CROSSREFS Cf. A114564, A302141, A163778. A216371 is a supersequence. Sequence in context: A292083 A135932 A231847 * A354801 A141101 A236632 Adjacent sequences: A105873 A105874 A105875 * A105877 A105878 A105879 KEYWORD nonn AUTHOR N. J. A. Sloane, Apr 24 2005 EXTENSIONS Edited by N. J. A. Sloane, Aug 08 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 22 05:36 EDT 2024. Contains 373565 sequences. (Running on oeis4.)