login
A135932
Primes whose integer square root remainder is also prime.
6
3, 7, 11, 19, 23, 41, 43, 47, 67, 71, 83, 103, 107, 113, 149, 151, 157, 163, 167, 199, 227, 263, 269, 331, 337, 347, 353, 419, 431, 443, 487, 491, 503, 521, 587, 593, 599, 607, 613, 617, 619, 683, 719, 787, 797, 821, 827, 907, 911, 919, 929, 937, 941, 947
OFFSET
1,1
COMMENTS
The integer square root of an integer x >= 0 can be defined as floor(sqrt(x)) and the remainder of this as x - (floor(sqrt(x)))^2.
MATHEMATICA
f[n_]:=n-(Floor[Sqrt[n]])^2; lst={}; Do[p=Prime[n]; If[PrimeQ[f[p]], AppendTo[lst, p]], {n, 7!}]; lst (* Vladimir Joseph Stephan Orlovsky, Feb 25 2010 *)
PROG
(PARI) { forprime(p=2, 2000, isr = sqrtint(p); Rem = p - isr*isr; if (isprime(Rem), print1(p, ", ") ) ) }
CROSSREFS
Sequence in context: A018805 A191037 A292083 * A231847 A105876 A354801
KEYWORD
nonn
AUTHOR
Harry J. Smith, Dec 07 2007
STATUS
approved