login
A105877
Primes for which -5 is a primitive root.
2
2, 11, 17, 19, 37, 53, 59, 73, 79, 97, 113, 131, 137, 139, 151, 157, 173, 179, 193, 197, 233, 239, 257, 277, 293, 311, 317, 331, 353, 359, 373, 397, 419, 431, 433, 439, 479, 491, 499, 557, 571, 577, 593, 599, 613, 617, 619, 653, 659, 673, 677, 719, 751, 757, 773, 797, 811
OFFSET
1,1
COMMENTS
Conjecture: the penultimate digit of a(n) is always odd. This characteristic seems to be proper of primes for which -5*n^2 is a primitive root. - Davide Rotondo, Oct 26 2024
For any n > 1, a(n) == 11, 13, 17, or 19 (mod 20), which implies the conjecture above. - Max Alekseyev, Nov 01 2024
MATHEMATICA
pr=-5; Select[Prime[Range[200]], MultiplicativeOrder[pr, # ] == #-1 &]
CROSSREFS
Sequence in context: A103336 A019402 A038927 * A309499 A173638 A018420
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 24 2005
STATUS
approved