|
|
A105880
|
|
Primes for which -8 is a primitive root.
|
|
3
|
|
|
5, 23, 29, 47, 53, 71, 101, 149, 167, 173, 191, 197, 239, 263, 269, 293, 311, 317, 359, 383, 389, 461, 479, 503, 509, 557, 599, 647, 653, 677, 701, 719, 743, 773, 797, 821, 839, 863, 887, 941, 983, 1031, 1061, 1109, 1151, 1223, 1229, 1277, 1301, 1319, 1367, 1373, 1439
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Members of A105874 that are not congruent to 1 mod 3. Terms are congruent to 5 or 23 modulo 24.
According to Artin's conjecture, the number of terms <= N is roughly ((3/5)*C)*PrimePi(N), where C is the Artin's constant = A005596, PrimePi = A000720. Compare: the number of terms of A001122 that are no greater than N is roughly C*PrimePi(N). (End)
|
|
LINKS
|
|
|
FORMULA
|
Let a(p,q)=sum(n=1,2*p*q,2*cos(2^n*Pi/((2*q+1)*(2*p+1)))). Then 2*p+1 is a prime of this sequence when a(p,9)==1. - Gerry Martens , May 21 2015
|
|
MATHEMATICA
|
pr=-8; Select[Prime[Range[400]], MultiplicativeOrder[pr, # ] == #-1 &] (* N. J. A. Sloane, Jun 01 2010 *)
a[p_, q_]:= Sum[2 Cos[2^n Pi/((2 q+1)(2 p+1))], {n, 1, 2 q p}]
2 Select[Range[800], Rationalize[N[a[#, 9], 20]] == 1 &] + 1
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|