login
A329479
Number of degree n polynomials f with all nonzero coefficients equal to 1 such that f(k) is divisible by 3 for all integers k.
2
0, 0, 0, 0, 1, 2, 6, 15, 30, 66, 121, 242, 462, 903, 1806, 3570, 7225, 14450, 29070, 58311, 116622, 233586, 466489, 932978, 1864590, 3727815, 7455630, 14908530, 29822521, 59645042, 119301006, 238612935, 477225870, 954473586, 1908903481, 3817806962, 7635526542
OFFSET
1,6
COMMENTS
Equivalently, this counts strings of numbers of length n that start with a 1 and which yield a multiple of 3 when read in any base.
FORMULA
a(2n) = A024495(n-1) * A024493(n).
a(2n+1) = A024495(n) * A024493(n).
Conjectured recurrence: a(n) = 2a(n-1) + 2a(n-2) - 5a(n-3) - 2a(n-4) + 10a(n-5) - 4a(n-6) - 4a(n-7) + 8a(n-8).
EXAMPLE
For n = 7, the a(7) = 6 (0,1)-polynomials of degree seven such that f(0) = f(1) = f(2) = 0 (mod 3) are
x^7 + x^5 + x^3,
x^7 + x^6 + x^5 + x^4 + x^3 + x^2,
x^7 + x^5 + x,
x^7 + x^3 + x,
x^7 + x^6 + x^5 + x^4 + x^2 + x, and
x^7 + x^6 + x^4 + x^3 + x^2 + x.
CROSSREFS
A008776(n) gives the number of polynomials of degree n+3 without the coefficient restriction.
Sequence in context: A289102 A289402 A289458 * A355057 A236111 A230455
KEYWORD
nonn
AUTHOR
Peter Kagey, Nov 13 2019
STATUS
approved