login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355057
a(n) = product of prohibited prime factors of A090252(n).
6
1, 1, 2, 6, 15, 30, 70, 210, 462, 6006, 51051, 102102, 277134, 6374082, 10623470, 223092870, 588153930, 18232771830, 51893273670, 2127624220470, 5381637734130, 252936973504110, 6702829797858915, 13405659595717830, 41628100849860630, 2539314151841498430, 7397132529277408470
OFFSET
1,3
COMMENTS
Let s(n) = A090252(n) and let K(n) = A007947(n) = squarefree kernel of n.
Prime p | s(n) implies p does not divide s(n+j), 1 <= j <= n.
Therefore a(n) is the product of primes p that cannot divide s(n).
a(n) = product of distinct primes that divide a(j) for floor((n+1)/2) <= j <= n-1. - N. J. A. Sloane, Jun 17 2022
LINKS
Michael De Vlieger, Annotated chart of prime factors of a(n), n = 1..64, plotting prime p | a(n) at (n, pi(p)) in black, and prime q | s(n) at (n, pi(q)) in red.
Michael De Vlieger, Plot of prime p | a(n), n = 1..2^12, plotting p | a(n) at (n, pi(p)) in black.
FORMULA
a(n) = a(n-1) * K(s(n-1)) / K(s((n-1)/2)), where the last operation is only carried out iff (n-1)/2 is an integer.
EXAMPLE
a(1) = 1;
a(2) = 1 since s(1) = 1, and (2-1)/2 is not an integer;
a(3) = a(2) * K(s(2)) / K(s((3-1)/2)) = 1 * 2 / 1 = 2;
a(4) = a(3) * K(s(3)) = 2 * 3 = 6;
a(5) = a(4) * K(s(4)) / K(s((5-1)/2)) = 6 * 5 / 2 = 15;
a(6) = a(5) * K(s(5)) = 15 * 2 = 30;
a(7) = a(6) * K(s(6)) / K(s((7-1)/2)) = 30 * 7 / 3 = 70;
etc.
MAPLE
# To get first M terms, from N. J. A. Sloane, Jun 18 2022
with(numtheory);
M:=20; ans:=[1, 1, 2];
for i from 4 to M do
S:={}; j1:=floor((i+1)/2); j2:=i-1;
for j from j1 to j2 do S:={op(S), op(factorset(b252[j]))} od:
t2 := product(S[k], k = 1..nops(S));
ans:=[op(ans), t2];
od:
ans;
MATHEMATICA
Block[{s = Import["https://oeis.org/A090252/b090252.txt", "Data"][[1 ;; 120, -1]], m = 1}, Reap[Do[m *= Times @@ FactorInteger[s[[If[# == 0, 1, #] &[i - 1]]]][[All, 1]]; If[IntegerQ[#] && # > 0, m /= Times @@ FactorInteger[s[[#]]][[All, 1]]] &[(i - 1)/2]; Sow[m], {i, Length[s]}] ][[-1, -1]] ]
PROG
(Python)
from math import prod, lcm, gcd
from itertools import count, islice
from collections import deque
from sympy import primefactors
def A355057_gen(): # generator of terms
aset, aqueue, c, b, f = {1}, deque([1]), 2, 1, True
yield 1
while True:
for m in count(c):
if m not in aset and gcd(m, b) == 1:
yield prod(primefactors(b))
aset.add(m)
aqueue.append(m)
if f: aqueue.popleft()
b = lcm(*aqueue)
f = not f
while c in aset:
c += 1
break
A355057_list = list(islice(A355057_gen(), 20)) # Chai Wah Wu, Jun 18 2022
CROSSREFS
See A354758 for another version.
A354765 is a binary encoding.
Sequence in context: A289402 A289458 A329479 * A236111 A230455 A141126
KEYWORD
nonn
AUTHOR
Michael De Vlieger, Jun 16 2022
STATUS
approved