OFFSET
1,3
COMMENTS
Prime p | s(n) implies p does not divide s(n+j), 1 <= j <= n.
Therefore a(n) is the product of primes p that cannot divide s(n).
a(n) = product of distinct primes that divide a(j) for floor((n+1)/2) <= j <= n-1. - N. J. A. Sloane, Jun 17 2022
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 1..500
Michael De Vlieger, Annotated chart of prime factors of a(n), n = 1..64, plotting prime p | a(n) at (n, pi(p)) in black, and prime q | s(n) at (n, pi(q)) in red.
Michael De Vlieger, Plot of prime p | a(n), n = 1..2^12, plotting p | a(n) at (n, pi(p)) in black.
FORMULA
a(n) = a(n-1) * K(s(n-1)) / K(s((n-1)/2)), where the last operation is only carried out iff (n-1)/2 is an integer.
EXAMPLE
a(1) = 1;
a(2) = 1 since s(1) = 1, and (2-1)/2 is not an integer;
a(3) = a(2) * K(s(2)) / K(s((3-1)/2)) = 1 * 2 / 1 = 2;
a(4) = a(3) * K(s(3)) = 2 * 3 = 6;
a(5) = a(4) * K(s(4)) / K(s((5-1)/2)) = 6 * 5 / 2 = 15;
a(6) = a(5) * K(s(5)) = 15 * 2 = 30;
a(7) = a(6) * K(s(6)) / K(s((7-1)/2)) = 30 * 7 / 3 = 70;
etc.
MAPLE
# To get first M terms, from N. J. A. Sloane, Jun 18 2022
with(numtheory);
M:=20; ans:=[1, 1, 2];
for i from 4 to M do
S:={}; j1:=floor((i+1)/2); j2:=i-1;
for j from j1 to j2 do S:={op(S), op(factorset(b252[j]))} od:
t2 := product(S[k], k = 1..nops(S));
ans:=[op(ans), t2];
od:
ans;
MATHEMATICA
Block[{s = Import["https://oeis.org/A090252/b090252.txt", "Data"][[1 ;; 120, -1]], m = 1}, Reap[Do[m *= Times @@ FactorInteger[s[[If[# == 0, 1, #] &[i - 1]]]][[All, 1]]; If[IntegerQ[#] && # > 0, m /= Times @@ FactorInteger[s[[#]]][[All, 1]]] &[(i - 1)/2]; Sow[m], {i, Length[s]}] ][[-1, -1]] ]
PROG
(Python)
from math import prod, lcm, gcd
from itertools import count, islice
from collections import deque
from sympy import primefactors
def A355057_gen(): # generator of terms
aset, aqueue, c, b, f = {1}, deque([1]), 2, 1, True
yield 1
while True:
for m in count(c):
if m not in aset and gcd(m, b) == 1:
yield prod(primefactors(b))
aset.add(m)
aqueue.append(m)
if f: aqueue.popleft()
b = lcm(*aqueue)
f = not f
while c in aset:
c += 1
break
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael De Vlieger, Jun 16 2022
STATUS
approved