login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355055
Number of achiral multidimensional n-ominoes with cell centers determining n-3 space.
5
1, 5, 23, 115, 668, 3401, 16469, 74410, 317612, 1287147, 5015932, 18920467, 69496943, 249618639, 879998839, 3053446651, 10452089459, 35360685297, 118416973230, 393038044024, 1294335897888, 4232938101229, 13757913332396
OFFSET
4,2
COMMENTS
Multidimensional polyominoes are connected sets of cells of regular tilings with Schläfli symbols {oo}, {4,4}, {4,3,4}, {4,3,3,4}, etc. Each tile is a regular orthotope (hypercube). This sequence is obtained using the first formula below. An achiral polyomino is identical to its reflection.
LINKS
W. F. Lunnon, Counting multidimensional polyominoes. Computer Journal 18 (1975), no. 4, pp. 366-367.
FORMULA
a(n) = A355053(n) - A355054(n) = 2*A355053(n) - A355052(n) = A355052(n) - 2*A355054(n).
a(n) = 2*A049430(n,n-3) - A195738(n,n-3), Lunnon's DE and DR arrays.
EXAMPLE
a(4)=1 as there is only one tetromino in one-space. a(5)=5 because there are 5 achiral pentominoes in 2-space, excluding the 1-D straight pentomino.
CROSSREFS
Cf. A355052 (oriented), A355053 (unoriented), A355054 (chiral), A355056 (asymmetric), A191092 (fixed), A355050 (orthoplex), A195738 (Lunnon's DR), A049430 (Lunnon's DE).
Sequence in context: A299589 A113284 A104090 * A358607 A073596 A167248
KEYWORD
nonn,easy
AUTHOR
Robert A. Russell, Jun 16 2022
STATUS
approved