login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323891
a(n) is the number of partitions of 72*n + 42 into 10 odd squares.
1
2, 9, 22, 41, 68, 106, 154, 212, 285, 368, 477, 598, 741, 898, 1076, 1286, 1524, 1785, 2068, 2379, 2741, 3131, 3554, 4002, 4497, 5044, 5644, 6274, 6939, 7653, 8445, 9295, 10186, 11117, 12113, 13192, 14355, 15556, 16807, 18147, 19570, 21089, 22673, 24300, 26029, 27865, 29821, 31822, 33894, 36088
OFFSET
0,1
REFERENCES
Laurențiu Panaitopol, Alexandru Gica, Arithmetic problems and number theory, Ed. Gil, Zalău, (2006), ch. 14, p. 85, pr. 32. (in Romanian).
LINKS
EXAMPLE
For n=0, 72*0+42 = 42 = 25+9+1+1+1+1+1+1+1+1 = 9+9+9+9+1+1+1+1+1+1, so a(0)=2.
For n=1, 72*1+42 = 114 = 81+25+1+1+1+1+1+1+1+1 = 81+9+9+9+1+1+1+1+1+1 = 49+49+9+1+1+1+1+1+1+1 = 49+25+25+9+1+1+1+1+1+1 = 49+25+9+9+9+9+1+1+1+1 = 49+9+9+9+9+9+9+9+1+1 = 25+25+25+25+9+1+1+1+1+1 = 25+25+25+9+9+9+9+1+1+1 = 25+25+9+9+9+9+9+9+9+1, so a(1)=9.
MAPLE
S:= proc(n, k, m)
option remember;
local p, j;
if k = 0 then if n = 0 then return 1 else return 0 fi
elif m < 1 then return 0
elif n < k then return 0
elif n > k*m^2 then return 0
fi;
if m^2 > n then
p:= floor(sqrt(n));
if p::even then p:= p-1 fi;
return procname(n, k, p)
fi;
add(procname(n-j*m^2, k-j, m-2), j=0..n/m^2)
end proc:
seq(S(72*n+42, 10, 72*n+42), n=0..100); # Robert Israel, Feb 24 2019
MATHEMATICA
a[n_] := IntegerPartitions[72n+42, {10}, Select[ Range[1, 72n+42, 2], IntegerQ@Sqrt@#&]] // Length;
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Sep 19 2022 *)
PROG
(Magma) [#RestrictedPartitions(72*n+42, 10, {(2*d+1)^2:d in [0..100]}): n in [0..100]];
KEYWORD
nonn
AUTHOR
Marius A. Burtea, Feb 12 2019
STATUS
approved