login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the number of partitions of 72*n + 42 into 10 odd squares.
1

%I #21 Sep 19 2022 06:18:42

%S 2,9,22,41,68,106,154,212,285,368,477,598,741,898,1076,1286,1524,1785,

%T 2068,2379,2741,3131,3554,4002,4497,5044,5644,6274,6939,7653,8445,

%U 9295,10186,11117,12113,13192,14355,15556,16807,18147,19570,21089,22673,24300,26029,27865,29821,31822,33894,36088

%N a(n) is the number of partitions of 72*n + 42 into 10 odd squares.

%D Laurențiu Panaitopol, Alexandru Gica, Arithmetic problems and number theory, Ed. Gil, Zalău, (2006), ch. 14, p. 85, pr. 32. (in Romanian).

%H Robert Israel, <a href="/A323891/b323891.txt">Table of n, a(n) for n = 0..2000</a>

%e For n=0, 72*0+42 = 42 = 25+9+1+1+1+1+1+1+1+1 = 9+9+9+9+1+1+1+1+1+1, so a(0)=2.

%e For n=1, 72*1+42 = 114 = 81+25+1+1+1+1+1+1+1+1 = 81+9+9+9+1+1+1+1+1+1 = 49+49+9+1+1+1+1+1+1+1 = 49+25+25+9+1+1+1+1+1+1 = 49+25+9+9+9+9+1+1+1+1 = 49+9+9+9+9+9+9+9+1+1 = 25+25+25+25+9+1+1+1+1+1 = 25+25+25+9+9+9+9+1+1+1 = 25+25+9+9+9+9+9+9+9+1, so a(1)=9.

%p S:= proc(n, k, m)

%p option remember;

%p local p,j;

%p if k = 0 then if n = 0 then return 1 else return 0 fi

%p elif m < 1 then return 0

%p elif n < k then return 0

%p elif n > k*m^2 then return 0

%p fi;

%p if m^2 > n then

%p p:= floor(sqrt(n));

%p if p::even then p:= p-1 fi;

%p return procname(n, k, p)

%p fi;

%p add(procname(n-j*m^2,k-j,m-2), j=0..n/m^2)

%p end proc:

%p seq(S(72*n+42, 10, 72*n+42), n=0..100); # _Robert Israel_, Feb 24 2019

%t a[n_] := IntegerPartitions[72n+42, {10}, Select[ Range[1, 72n+42, 2], IntegerQ@Sqrt@#&]] // Length;

%t Table[a[n], {n, 0, 100}] (* _Jean-François Alcover_, Sep 19 2022 *)

%o (Magma) [#RestrictedPartitions(72*n+42, 10, {(2*d+1)^2:d in [0..100]}): n in [0..100]];

%Y Cf. A000041, A001156, A016754, A025425, A025434, A033461, A035294, A078406, A090677, A167661, A167700.

%K nonn

%O 0,1

%A _Marius A. Burtea_, Feb 12 2019