login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106058
4th diagonal of triangle in A059317.
2
0, 0, 0, 2, 9, 22, 42, 70, 107, 154, 212, 282, 365, 462, 574, 702, 847, 1010, 1192, 1394, 1617, 1862, 2130, 2422, 2739, 3082, 3452, 3850, 4277, 4734, 5222, 5742, 6295, 6882, 7504, 8162, 8857, 9590, 10362, 11174, 12027, 12922, 13860, 14842, 15869, 16942, 18062
OFFSET
0,4
LINKS
W. F. Klostermeyer, M. E. Mays, L. Soltes and G. Trapp, A Pascal rhombus, Fibonacci Quarterly, 35 (1997), 318-328.
FORMULA
For n>1, a(n) = (1/6)*(n-2)*(n^2 + 8n - 21).
From R. J. Mathar, Feb 06 2010: (Start)
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4) for n >= 6.
G.f.: -x^3*(-2-x+2*x^2)/(x-1)^4. (End)
MATHEMATICA
Join[{0, 0}, LinearRecurrence[{4, -6, 4, -1}, {0, 2, 9, 22}, 45]] (* Georg Fischer, Dec 10 2019 *)
PROG
(PARI) a(n)=if(n>2, (n-2)*(n^2 + 8*n - 21)/6, 0) \\ Charles R Greathouse IV, Oct 18 2022
CROSSREFS
Sequence in context: A056105 A323891 A212069 * A086718 A023625 A166754
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 28 2005
STATUS
approved