The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A166754 a(n) = 4*A061547(n+1) - 3*A166753(n). 2
 1, 2, 9, 22, 53, 114, 241, 494, 1005, 2026, 4073, 8166, 16357, 32738, 65505, 131038, 262109, 524250, 1048537, 2097110, 4194261, 8388562, 16777169, 33554382, 67108813, 134217674, 268435401, 536870854, 1073741765, 2147483586 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (3,-1,-3,2). FORMULA G.f.: (1-x+4*x^2)/((1+x)*(1-x)^2*(1-2*x)). a(n) = (2^(n+3) + (-1)^n - (4*n+7))/2. a(n) = A000975(n) - 4*A011377(n-2). a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + 2*a(n-4). E.g.f.: (8*exp(2*x) + exp(-x) - (4*x+7)*exp(x))/2. - G. C. Greubel, Jun 04 2019 MATHEMATICA LinearRecurrence[{3, -1, -3, 2}, {1, 2, 9, 22}, 40] (* G. C. Greubel, May 24 2016 *) PROG (PARI) my(x='x+O('x^40)); Vec((1-x+4*x^2)/((1+x)*(1-x)^2*(1-2*x))) \\ G. C. Greubel, Oct 10 2017 (Magma) [(2^(n+3) +(-1)^n -(4*n+7))/2: n in [0..40]]; // G. C. Greubel, Oct 10 2017 (Sage) [(2^(n+3) + (-1)^n - (4*n+7))/2 for n in (0..40)] # G. C. Greubel, Jun 04 2019 (GAP) List([0..40], n-> (2^(n+3) + (-1)^n - (4*n+7))/2) # G. C. Greubel, Jun 04 2019 CROSSREFS Cf. A061547, A166753. Cf. A000975, A011377. Sequence in context: A106058 A086718 A023625 * A026589 A319792 A091002 Adjacent sequences: A166751 A166752 A166753 * A166755 A166756 A166757 KEYWORD easy,nonn AUTHOR Paul Barry, Oct 21 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 13:29 EST 2022. Contains 358510 sequences. (Running on oeis4.)