login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A320296
Number of series-reduced rooted trees whose leaves form an integer partition of n with no 1's.
5
0, 1, 1, 2, 2, 5, 6, 15, 22, 51, 86, 195, 354, 781, 1512, 3286, 6602, 14269, 29424, 63494, 133298, 287909, 612188, 1325375, 2844448, 6176145, 13348858, 29074164, 63187176, 138044144, 301350424, 660265471, 1446678326, 3178246273, 6985464590, 15384556290
OFFSET
1,4
COMMENTS
Also phylogenetic trees with n unlabeled objects and no singleton leaves.
LINKS
EXAMPLE
The a(2) = 1 through a(9) = 22 trees:
2 3 4 5 6 7 8 9
(22) (23) (24) (25) (26) (27)
(33) (34) (35) (36)
(222) (223) (44) (45)
(2(22)) ((22)3) (224) (225)
(2(23)) (233) (234)
(2222) (333)
((22)4) (2223)
(2(24)) ((22)5)
((23)3) (2(25))
(2(33)) ((23)4)
(2(222)) (2(34))
(22(22)) ((24)3)
((22)(22)) ((33)3)
(2(2(22))) (2(22)3)
(2(223))
(22(23))
(3(222))
((2(22))3)
((22)(23))
(2((22)3))
(2(2(23)))
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
t[n_]:=t[n]=If[PrimeQ[n], {n}, Join@@Table[Union[Sort/@Tuples[t/@fac]], {fac, Select[facs[n], Length[#]>1&]}]];
Table[Sum[Length[t[Times@@Prime/@ptn]], {ptn, Select[IntegerPartitions[n], FreeQ[#, 1]&]}], {n, 15}]
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
seq(n)={my(v=vector(n)); for(n=2, n, v[n]=1 + EulerT(v[1..n])[n]); v} \\ Andrew Howroyd, Oct 25 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 09 2018
EXTENSIONS
Terms a(26) and beyond from Andrew Howroyd, Oct 25 2018
STATUS
approved