OFFSET
2,1
LINKS
Yuanan Diao, Michael Finney, and Dawn Ray, The number of oriented rational links with a given deficiency number, arXiv:2007.02819 [math.GT], 2020. See Theorem 3 p.9 and Table 1 p. 14.
C. Ernst and D. W. Sumners, The Growth of the Number of Prime Knots, Math. Proc. Cambridge Philos. Soc. 102, 303-315, 1987 (see Theorem 1, formulas for TL_n^*).
Index entries for linear recurrences with constant coefficients, signature (1,3,-1,0,-2,-4).
FORMULA
a(n) = (2^(n-1)+1)/3 + 2^(n/2-1) if n is even; (2^(n-1)+2^((n-1)/2)-2)/3 if n is odd and n == 1 mod 4; (2^(n-1)+2^((n-1)/2))/3 if n is odd and n == 3 mod 4.
G.f.: x^2*(2 - 3*x^2 - 3*x^3 - 4*x^4)/(1 - x - 3*x^2 + x^3 + 2*x^5 + 4*x^6). - Jinyuan Wang, Jul 08 2020
PROG
(PARI) a(n) = if (n%2, if ((n%4)==1, (2^(n-1)+2^((n-1)/2)-2)/3, (2^(n-1)+2^((n-1)/2))/3), (2^(n-1)+1)/3 + 2^(n/2-1));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michel Marcus, Jul 07 2020
STATUS
approved