login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A329908
Number of oriented rational links with crossing number n.
4
2, 2, 5, 6, 15, 24, 51, 90, 187, 352, 715, 1386, 2795, 5504, 11051, 21930, 43947, 87552, 175275, 349866, 700075, 1398784, 2798251, 5593770, 11188907, 22372352, 44747435, 89483946, 178973355, 357924864, 715860651, 1431677610, 2863377067, 5726666752, 11453377195
OFFSET
2,1
LINKS
Yuanan Diao, Michael Finney, and Dawn Ray, The number of oriented rational links with a given deficiency number, arXiv:2007.02819 [math.GT], 2020. See Theorem 3 p.9 and Table 1 p. 14.
C. Ernst and D. W. Sumners, The Growth of the Number of Prime Knots, Math. Proc. Cambridge Philos. Soc. 102, 303-315, 1987 (see Theorem 1, formulas for TL_n^*).
FORMULA
a(n) = (2^(n-1)+1)/3 + 2^(n/2-1) if n is even; (2^(n-1)+2^((n-1)/2)-2)/3 if n is odd and n == 1 mod 4; (2^(n-1)+2^((n-1)/2))/3 if n is odd and n == 3 mod 4.
G.f.: x^2*(2 - 3*x^2 - 3*x^3 - 4*x^4)/(1 - x - 3*x^2 + x^3 + 2*x^5 + 4*x^6). - Jinyuan Wang, Jul 08 2020
PROG
(PARI) a(n) = if (n%2, if ((n%4)==1, (2^(n-1)+2^((n-1)/2)-2)/3, (2^(n-1)+2^((n-1)/2))/3), (2^(n-1)+1)/3 + 2^(n/2-1));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michel Marcus, Jul 07 2020
STATUS
approved