login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A368727
Number of non-isomorphic connected multiset partitions of weight n into singletons or strict pairs.
2
1, 1, 2, 2, 5, 6, 15, 21, 49, 82, 184, 341, 766, 1530, 3428, 7249, 16394, 36009, 82492, 186485, 433096, 1001495, 2358182, 5554644, 13255532, 31718030, 76656602, 185982207, 454889643, 1117496012, 2764222322, 6868902152, 17172601190
OFFSET
0,3
LINKS
FORMULA
Inverse Euler transform of A339888.
EXAMPLE
Non-isomorphic representatives of the a(1) = 1 through a(6) = 15 multiset partitions:
{1} {12} {2}{12} {12}{12} {2}{12}{12} {12}{12}{12}
{1}{1} {1}{1}{1} {13}{23} {2}{13}{23} {12}{13}{23}
{1}{2}{12} {3}{13}{23} {13}{23}{23}
{2}{2}{12} {1}{2}{2}{12} {13}{24}{34}
{1}{1}{1}{1} {2}{2}{2}{12} {14}{24}{34}
{1}{1}{1}{1}{1} {1}{2}{12}{12}
{1}{2}{13}{23}
{2}{2}{12}{12}
{2}{2}{13}{23}
{2}{3}{13}{23}
{3}{3}{13}{23}
{1}{1}{2}{2}{12}
{1}{2}{2}{2}{12}
{2}{2}{2}{2}{12}
{1}{1}{1}{1}{1}{1}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]& /@ sps[Complement[set, s]]] /@ Cases[Subsets[set], {i, ___}];
mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]], {s, Flatten[MapIndexed[Table[#2, {#1}]&, #]]& /@ IntegerPartitions[n]}];
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}], Length[Intersection@@s[[#]]]>0&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List /@ c[[1]]], Union@@s[[c[[1]]]]]]]]];
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i, p[[i]]}, {i, Length[p]}])], {p, Permutations[Union@@m]}]]];
Table[Length[Union[brute /@ Select[mpm[n], And@@UnsameQ@@@#&&Max@@Length/@#<=2&&Length[csm[#]]<=1&]]], {n, 0, 8}]
CROSSREFS
For edges of any size we have A056156, with loops A007718.
This is the connected case of A339888.
Allowing loops {x,x} gives A368726, Euler transform A320663.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A007716 counts non-isomorphic multiset partitions, into pairs A007717.
A062740 counts connected loop-graphs, unlabeled A054921.
A320732 counts factorizations into primes or semiprimes, strict A339839.
A322661 counts covering loop-graphs, unlabeled A322700.
Sequence in context: A028410 A050216 A345470 * A320296 A329908 A295198
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 06 2024
STATUS
approved