

A329911


The number of rooted chains of reflexive matrices of order n.


0




OFFSET

0,3


COMMENTS

Also, the number of n X n distinct rooted reflexive fuzzy matrices.
The number of chains in the power set of (n^2n)elements such that the first term of the chains is either an empty set or a set of (n^2n)elements.
The number of chains in the collection of all reflexive matrices of order n such that the first term of the chains is either identity matrix or unit matrix.


LINKS

Table of n, a(n) for n=0..7.
S. R. Kannan and Rajesh Kumar Mohapatra, Counting the Number of NonEquivalent Classes of Fuzzy Matrices Using Combinatorial Techniques, arXiv preprint arXiv:1909.13678 [math.GM], 2019.
V. Murali, Combinatorics of counting finite fuzzy subsets, Fuzzy Sets Syst., 157(17)(2006), 24032411.
M. Tărnăuceanu, The number of chains of subgroups of a finite elementary abelian pgroup, arXiv preprint arXiv:1506.08298 [math.GR], 2015.


FORMULA

a(n) = A000629(n^2n).


CROSSREFS

Cf. A000629, A038719, A007047, A328044, A330301, A330302, A330804, A331957.
Sequence in context: A158880 A137040 A172733 * A088021 A102979 A069942
Adjacent sequences: A329908 A329909 A329910 * A329912 A329913 A329914


KEYWORD

nonn


AUTHOR

S. R. Kannan, Rajesh Kumar Mohapatra, Feb 29 2020


STATUS

approved



