OFFSET
3,4
COMMENTS
Arises from a conjecture about sequence of rational links with n crossings.
Conjecture derived from: s(n) = k(n) + l(n): definition of sum of rational knots (k) and links (l) s(n) = 6s(n-2) -8s(n-4): see A005418 (Jablan's observation) d(n) = d(n-2) + 2d(n-4): see A001045 (modified Jacobsthal sequence) l(n) = k(n-1) + d(n): conjecture.
a(n) is the number of rational (2-component) links. - Slavik Jablan, Dec 26 2003
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 3..1000
C. Ernst and D. W. Sumners, The Growth of the Number of Prime Knots, Math. Proc. Cambridge Philos. Soc. 102, 303-315, 1987 (see Theorem 5, formulas for TL_n).
Index entries for linear recurrences with constant coefficients, signature (1,3,-1,0,-2,-4).
FORMULA
a(n) = +a(n-1) +3*a(n-2) -a(n-3) -2*a(n-5) -4*a(n-6). - R. J. Mathar, Nov 23 2011
G.f.: -x^4*(-1+x^2+3*x^4+2*x^3) / ( (2*x-1)*(1+x)*(2*x^2-1)*(1+x^2) ). - R. J. Mathar, Nov 23 2011
a(n) = (J(n-3) + J((n-3)/2))/2 if n is odd; (J(n-3) + J(n/2))/2 if n is even, where J is the Jacobsthal number A001045. - David Scambler, Dec 12 2011
MATHEMATICA
f[x_] := (x-x^3-2x^4-3x^5) / (1-x-3x^2+x^3+2x^5+4x^6); CoefficientList[ Series[ f[x], {x, 0, 29}], x] (* Jean-François Alcover, Dec 06 2011 *)
J[n_] := (2^n - (-1)^n)/3; Table[(J[n - 3] + J[(n - If[OddQ[n], 3, 0])/2])/2 , {n, 3, 31}] (* David Scambler, Dec 13 2011 *)
LinearRecurrence[{1, 3, -1, 0, -2, -4}, {0, 1, 1, 3, 3, 8}, 30] (* Harvey P. Dale, Nov 12 2013 *)
PROG
(Haskell)
a090597 n = a090597_list !! (n-3)
a090597_list = [0, 1, 1, 3, 3, 8, 12] ++ zipWith (-)
(drop 4 $ zipWith (-) (map (* 5) zs) (drop 2 a090597_list))
(zipWith (+) (drop 2 $ map (* 2) zs) (map (* 8) zs))
where zs = zipWith (+) a090597_list $ tail a090597_list
-- Reinhard Zumkeller, Nov 24 2011
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Thomas A. Gittings, Dec 11 2003
STATUS
approved