The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A090597 a(n) = - a(n-1) + 5(a(n-2) + a(n-3)) - 2(a(n-4) + a(n-5)) - 8(a(n-6) + a(n-7)). 6
 0, 1, 1, 3, 3, 8, 12, 27, 45, 96, 176, 363, 693, 1408, 2752, 5547, 10965, 22016, 43776, 87723, 174933, 350208, 699392, 1399467, 2796885, 5595136, 11186176, 22375083, 44741973, 89489408 (list; graph; refs; listen; history; text; internal format)
 OFFSET 3,4 COMMENTS Arises from a conjecture about sequence of rational links with n crossings. Conjecture derived from: s(n) = k(n) + l(n): definition of sum of rational knots (k) and links (l) s(n) = 6s(n-2) -8s(n-4): see A005418 (Jablan's observation) d(n) = d(n-2) + 2d(n-4): see A001045 (modified Jacobsthal sequence) l(n) = k(n-1) + d(n): conjecture. a(n) is the number of rational (2-component) links. - Slavik Jablan, Dec 26 2003 Also yields the number of meanders, reduced by symmetry, on an n X 3 rectangle (see A200893). - Jon Wild, Nov 25 2011 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 3..1000 C. Ernst and D. W. Sumners, The Growth of the Number of Prime Knots, Math. Proc. Cambridge Philos. Soc. 102, 303-315, 1987 (see Theorem 5, formulas for TL_n). Index entries for linear recurrences with constant coefficients, signature (1,3,-1,0,-2,-4). FORMULA a(n) = +a(n-1) +3*a(n-2) -a(n-3) -2*a(n-5) -4*a(n-6). - R. J. Mathar, Nov 23 2011 G.f.: -x^4*(-1+x^2+3*x^4+2*x^3) / ( (2*x-1)*(1+x)*(2*x^2-1)*(1+x^2) ). - R. J. Mathar, Nov 23 2011 a(n) = (J(n-3) + J((n-3)/2))/2 if n is odd; (J(n-3) + J(n/2))/2 if n is even, where J is the Jacobsthal number A001045. - David Scambler, Dec 12 2011 MATHEMATICA f[x_] := (x-x^3-2x^4-3x^5) / (1-x-3x^2+x^3+2x^5+4x^6); CoefficientList[ Series[ f[x], {x, 0, 29}], x] (* Jean-François Alcover, Dec 06 2011 *) J[n_] := (2^n - (-1)^n)/3; Table[(J[n - 3] + J[(n - If[OddQ[n], 3, 0])/2])/2 , {n, 3, 31}] (* David Scambler, Dec 13 2011 *) LinearRecurrence[{1, 3, -1, 0, -2, -4}, {0, 1, 1, 3, 3, 8}, 30] (* Harvey P. Dale, Nov 12 2013 *) PROG (Haskell) a090597 n = a090597_list !! (n-3) a090597_list = [0, 1, 1, 3, 3, 8, 12] ++ zipWith (-)    (drop 4 \$ zipWith (-) (map (* 5) zs) (drop 2 a090597_list))    (zipWith (+) (drop 2 \$ map (* 2) zs) (map (* 8) zs))    where zs = zipWith (+) a090597_list \$ tail a090597_list -- Reinhard Zumkeller, Nov 24 2011 CROSSREFS This is the difference between A005418 and A018240. Cf. A018240 = sequence of rational knots, A005418 = number of rational knots and links, A001045 = Jacobsthal sequence, A329908, A336398. Cf. A200893, and see the third column of the triangle read by rows there. Sequence in context: A276552 A213030 A303902 * A304887 A126073 A126592 Adjacent sequences:  A090594 A090595 A090596 * A090598 A090599 A090600 KEYWORD easy,nonn AUTHOR Thomas A. Gittings, Dec 11 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 14 06:54 EDT 2022. Contains 356110 sequences. (Running on oeis4.)