login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369084
Expansion of g.f. A(x) satisfying 1 = Sum_{n=-oo..+oo} x^(n*(n-1)/2) * (x^n - A(x))^n.
1
1, 1, 1, 1, 3, 3, 8, 12, 29, 48, 105, 202, 420, 831, 1729, 3538, 7370, 15293, 32094, 67410, 142221, 301074, 639076, 1360991, 2903607, 6213695, 13318015, 28616357, 61576994, 132779990, 286704638, 620144700, 1343082108, 2913091456, 6325803831, 13754042495, 29937461161
OFFSET
1,5
LINKS
FORMULA
G.f. A(x) satisfies:
(1) 1 = Sum_{n=-oo..+oo} x^(n*(n-1)/2) * (x^n - A(x))^n.
(2) 1 = Sum_{n=-oo..+oo} x^(n*(3*n+1)/2) / (1 - A(x)*x^n)^n.
EXAMPLE
G.f.: A(x) = x + x^2 + x^3 + x^4 + 3*x^5 + 3*x^6 + 8*x^7 + 12*x^8 + 29*x^9 + 48*x^10 + 105*x^11 + 202*x^12 + 420*x^13 + 831*x^14 + 1729*x^15 + ...
where
1 = ... + x^6/(1/x^3 - A(x))^3 + x^3/(1/x^2 - A(x))^2 + x/(1/x - A(x)) + 1 + (x - A(x)) + x*(x^2 - A(x))^2 + x^3*(x^3 - A(x))^3 + x^6*(x^4 - A(x))^4 + ... + x^(n*(n-1)/2)*(x^n - A(x))^n + ...
PROG
(PARI) {a(n) = my(A=[0], M); for(i=1, n, A=concat(A, 0); M = ceil(sqrt(2*(#A)+9));
A[#A] = polcoeff(-1 + sum(m=-M, M, x^(m*(m-1)/2) * (x^m - Ser(A))^m ), #A-1)); A[n+1]}
for(n=1, 40, print1(a(n), ", "))
CROSSREFS
Cf. A355861.
Sequence in context: A364468 A303902 A090597 * A304887 A126073 A126592
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 21 2024
STATUS
approved