Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #47 Jul 20 2020 10:56:47
%S 0,1,1,3,3,8,12,27,45,96,176,363,693,1408,2752,5547,10965,22016,43776,
%T 87723,174933,350208,699392,1399467,2796885,5595136,11186176,22375083,
%U 44741973,89489408
%N a(n) = - a(n-1) + 5(a(n-2) + a(n-3)) - 2(a(n-4) + a(n-5)) - 8(a(n-6) + a(n-7)).
%C Arises from a conjecture about sequence of rational links with n crossings.
%C Conjecture derived from: s(n) = k(n) + l(n): definition of sum of rational knots (k) and links (l) s(n) = 6s(n-2) -8s(n-4): see A005418 (Jablan's observation) d(n) = d(n-2) + 2d(n-4): see A001045 (modified Jacobsthal sequence) l(n) = k(n-1) + d(n): conjecture.
%C a(n) is the number of rational (2-component) links. - Slavik Jablan, Dec 26 2003
%C Also yields the number of meanders, reduced by symmetry, on an n X 3 rectangle (see A200893). - _Jon Wild_, Nov 25 2011
%H Reinhard Zumkeller, <a href="/A090597/b090597.txt">Table of n, a(n) for n = 3..1000</a>
%H C. Ernst and D. W. Sumners, <a href="https://doi.org/10.1017/S0305004100067323">The Growth of the Number of Prime Knots</a>, Math. Proc. Cambridge Philos. Soc. 102, 303-315, 1987 (see Theorem 5, formulas for TL_n).
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-1,0,-2,-4).
%F a(n) = +a(n-1) +3*a(n-2) -a(n-3) -2*a(n-5) -4*a(n-6). - _R. J. Mathar_, Nov 23 2011
%F G.f.: -x^4*(-1+x^2+3*x^4+2*x^3) / ( (2*x-1)*(1+x)*(2*x^2-1)*(1+x^2) ). - _R. J. Mathar_, Nov 23 2011
%F a(n) = (J(n-3) + J((n-3)/2))/2 if n is odd; (J(n-3) + J(n/2))/2 if n is even, where J is the Jacobsthal number A001045. - _David Scambler_, Dec 12 2011
%t f[x_] := (x-x^3-2x^4-3x^5) / (1-x-3x^2+x^3+2x^5+4x^6); CoefficientList[ Series[ f[x], {x, 0, 29}], x] (* _Jean-François Alcover_, Dec 06 2011 *)
%t J[n_] := (2^n - (-1)^n)/3; Table[(J[n - 3] + J[(n - If[OddQ[n], 3, 0])/2])/2 , {n, 3, 31}] (* _David Scambler_, Dec 13 2011 *)
%t LinearRecurrence[{1,3,-1,0,-2,-4},{0,1,1,3,3,8},30] (* _Harvey P. Dale_, Nov 12 2013 *)
%o (Haskell)
%o a090597 n = a090597_list !! (n-3)
%o a090597_list = [0,1,1,3,3,8,12] ++ zipWith (-)
%o (drop 4 $ zipWith (-) (map (* 5) zs) (drop 2 a090597_list))
%o (zipWith (+) (drop 2 $ map (* 2) zs) (map (* 8) zs))
%o where zs = zipWith (+) a090597_list $ tail a090597_list
%o -- _Reinhard Zumkeller_, Nov 24 2011
%Y This is the difference between A005418 and A018240.
%Y Cf. A018240 = sequence of rational knots, A005418 = number of rational knots and links, A001045 = Jacobsthal sequence, A329908, A336398.
%Y Cf. A200893, and see the third column of the triangle read by rows there.
%K easy,nonn
%O 3,4
%A _Thomas A. Gittings_, Dec 11 2003