login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A320293
Number of series-reduced rooted trees whose leaves are integer partitions whose multiset union is an integer partition of n with no 1's.
3
0, 1, 1, 3, 3, 9, 11, 30, 45, 112, 195, 475, 901, 2136, 4349, 10156, 21565, 50003, 109325, 252761, 563785, 1303296, 2948555, 6826494, 15604053, 36210591, 83415487, 194094257, 449813607, 1049555795, 2444027917, 5718195984, 13367881473, 31357008065, 73546933115
OFFSET
1,4
COMMENTS
Also phylogenetic trees on integer partitions of n with no 1's.
LINKS
EXAMPLE
The a(2) = 1 through a(7) = 11 trees:
(2) (3) (4) (5) (6) (7)
(22) (32) (33) (43)
((2)(2)) ((2)(3)) (42) (52)
(222) (322)
((2)(4)) ((2)(5))
((3)(3)) ((3)(4))
((2)(22)) ((2)(23))
((2)(2)(2)) ((3)(22))
((2)((2)(2))) ((2)(2)(3))
((2)((2)(3)))
((3)((2)(2)))
PROG
(PARI) EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
seq(n)={my(p=1/prod(k=2, n, 1 - x^k + O(x*x^n)), v=vector(n)); for(n=1, n, v[n]=polcoef(p, n) + EulerT(v[1..n])[n]); v} \\ Andrew Howroyd, Oct 25 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 09 2018
EXTENSIONS
Terms a(23) and beyond from Andrew Howroyd, Oct 25 2018
STATUS
approved